xPC Target™
User’s Guide

R2013a

MATLAB&SIMULINK®

<+)} MathWorks:

LN N

How to Contact MathWorks

www . mathworks.com Web

comp.soft-sys.matlab Newsgroup

www . mathworks.com/contact_TS.html Technical Support
suggest@mathworks.com Product enhancement suggestions
bugs@mathworks.com Bug reports

doc@mathworks.com Documentation error reports
service@mathworks.com Order status, license renewals, passcodes
info@mathworks.com Sales, pricing, and general information

508-647-7000 (Phone)
508-647-7001 (Fax)

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098

For contact information about worldwide offices, see the MathWorks Web site.
xPC Target™ User’s Guide
© COPYRIGHT 1999-2013 by The MathWorks, Inc.

The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or
reproduced in any form without prior written consent from The MathWorks, Inc.

FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation
by, for, or through the federal government of the United States. By accepting delivery of the Program

or Documentation, the government hereby agrees that this software or documentation qualifies as
commercial computer software or commercial computer software documentation as such terms are used

or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and
conditions of this Agreement and only those rights specified in this Agreement, shall pertain to and govern
the use, modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government)
and shall supersede any conflicting contractual terms or conditions. If this License fails to meet the
government’s needs or is inconsistent in any respect with federal procurement law, the government agrees
to return the Program and Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See

www . mathworks.com/trademarks for a list of additional trademarks. Other product or brand
names may be trademarks or registered trademarks of their respective holders.

Patents

MathWorks products are protected by one or more U.S. patents. Please see
www.mathworks.com/patents for more information.

http://www.mathworks.com/trademarks
http://www.mathworks.com/patents

Revision History

September 1999 First printing New for Version 1 (Release 11.1)
November 2000 Online only Revised for Version 1.1 (Release 12)
June 2001 Online only Revised for Version 1.2 (Release 12.1)
September 2001 Online only Revised for Version 1.3 (Release 12.1+)
July 2002 Online only Revised for Version 2 (Release 13)

June 2004 Online only Revised for Version 2.5 (Release 14)
August 2004 Online only Revised for Version 2.6 (Release 14+)
October 2004 Online only Revised for Version 2.6.1 (Release 14SP1)
November 2004 Online only Revised for Version 2.7 (Release 14SP1+)
March 2005 Online only Revised for Version 2.7.2 (Release 14SP2)
September 2005 Online only Revised for Version 2.8 (Release 14SP3)
March 2006 Online only Revised for Version 2.9 (Release 2006a)
May 2006 Online only Revised for Version 3.0 (Release 2006a+)
September 2006 Online only Revised for Version 3.1 (Release 2006b)
March 2007 Online only Revised for Version 3.2 (Release 2007a)
September 2007 Online only Revised for Version 3.3 (Release 2007b)
March 2008 Online only Revised for Version 3.4 (Release 2008a)
October 2008 Online only Revised for Version 4.0 (Release 2008b)
March 2009 Online only Revised for Version 4.1 (Release 2009a)
September 2009 Online only Revised for Version 4.2 (Release 2009b)
March 2010 Online only Revised for Version 4.3 (Release 2010a)
September 2010 Online only Revised for Version 4.4 (Release 2010b)
April 2011 Online only Revised for Version 5.0 (Release 2011a)
September 2011 Online only Revised for Version 5.1 (Release 2011b)
March 2012 Online only Revised for Version 5.2 (Release 2012a)
September 2012 Online only Revised for Version 5.3 (Release 2012b)

March 2013 Online only Revised for Version 5.4 (Release 2013a)

Model Architectures

FPGA Models

FPGA Support ...ttt 1-2
FPGA Programming and Configuration 1-4
Simulink Domain Model 1-6
FPGA Subsystem Plan 1-8
Target Devicettt ittt 1-8
FPGA Synchronization Mode 1-8
FPGA Inports and Outportsccuuueeieeeo.... 1-8
FPGA Clock Frequencycciiiiiiiiuneennna.. 1-9
FPGA Target Configuration 1-11
FPGA Target Interface Configuration 1-13
FPGA Target Frequency Configuration 1-15
xPC Target Interface Subsystem Generation 1-17
xPC Target Domain Model 1-21
xPC Target Interface Subsystem Integration 1-23
Target Application Execution 1-25
Interrupt Configuration 1-26

FPGA Domain Model 1-26

vi

xPC Target Domain Model 1-27

FPGA Synchronization Modes 1-29

Vector CANape Support

2

Vector CANape i, 2-2
Vector CANape Basics, 2-2
xPC Target and Vector CANape Limitations 2-3

Configuring the Model for Vector CANape 2-4
Setting Up and Building the Model 2-4
Creating a New Vector CANape Project 2-5
Configuring the Vector CANape Device 2-6
Providing A2L (ASAP2) Files for Vector CANape 2-9

Event Mode Data Acquisition 2-11
Guidelines ...t e e 2-11
Limitations0iuitin e e 2-11

Incorporating Fortran S-Functions

3

Fortran S-Functions 3-2
Prerequisites 3-2
Simulink Demos Folder 3-2
Steps to Incorporate Fortran 3-3

Fortran Atmosphere Model 3-4
Creating a Fortran Atmosphere Model 3-4
Compiling Fortran Files 3-7
Creating a C-MEX Wrapper S-Function 3-8
Compiling and Linking the Wrapper S-Function 3-12

Validating the Fortran Code and Wrapper S-Function ... 3-13

Contents

Preparing the Model for the xPC Target Application
Build ... e 3-14
Building and Running the xPC Target Application 3-16

Target Application Environment

q

xPC Target Options Configuration Parameters 4-3
xPC Target Explorer 4-4

Basic Operationsiiiiimnnneneeennnnn 4-4

Default Target Computersccuuun.. 4-5

Saving Environment Properties 4-6
Command-Line C Compiler Configuration 4-7
Command-Line Setup 4-9
Command-Line Ethernet Communication Setup 4-10
Command-Line PCI Bus Ethernet Setup 4-11
PCI Bus Ethernet Hardware 4-12
Command-Line PCI Bus Ethernet Settings 4-13
Command-Line USB-to-Ethernet Setup 4-16
USB-to-Ethernet Hardware 4-17
Command-Line USB-to-Ethernet Settings 4-19
Command-Line ISA Bus Ethernet Setup 4-21
ISA Bus Ethernet Hardware 4-22

vii

viii

Contents

Command-Line ISA Bus Ethernet Settings 4-24

Ethernet Card Selection by Index 4-27
Command-Line Ethernet Card Selection by Index 4-29
Command-Line RS-232 Communication Setup 4-32
RS-232 Hardware 4-33
Command-Line RS-232 Settings 4-34
Command-Line Target Computer Settings 4-36
Command-Line Target Boot Methods 4-39
Command-Line Kernel Creation Prechecks 4-40
Command-Line Network Boot Method 4-41
Command-Line CD/DVD Boot Method 4-43
Command-Line DOS Loader Boot Method 4-45
Command-Line Removable Disk Boot Method 4-47
Command-Line Stand Alone Boot Method 4-49
Command-Line Stand Alone Settings 4-50

Signals and Parameters

5

Signal Monitoring Basics 5-4

Monitor Signals Using xPC Target Explorer

Monitor Signals Using MATLAB Language

Configure Stateflow States as Test Points

Monitor Stateflow States Using xPC Target Explorer ..

Monitor Stateflow States Using MATLAB Language

Animate Stateflow Charts Using Simulink External
Mode ... e e e

Signal Tracing Basics

Configure Target Scope (xPC)Blocks

xPC Target Scope Usage,

Target Scope Usageiiiiiinnnn.

Configure Host Scope (xPC) Blocks

Host Scope Usagecciiiiiiiiiiinnnn.

Create Target Scopes Using xPC Target Explorer

Configure Scope Sampling Using xPC Target
Explorer e

Trigger Scopes Interactively Using xPC Target
Explorer e e

Trigger Scopes Noninteractively Using xPC Target
Explorer i e e

5-5

5-8

5-9

5-12

5-15

5-16

5-18

5-19

5-25

5-26

5-27

5-30

5-31

5-37

5-40

5-44

ix

X

Contents

Configure Target Scopes Using xPC Target Explorer ..

Create Signal Groups Using xPC Target Explorer

Create Host Scopes Using xPC Target Explorer

Configure the Host Scope Viewer

Configure Target Scopes Using MATLAB Language ...

Trace Signals Using Simulink External Mode

External Mode Usage,

Trace Signals Using a Web Browser

Signal Logging Basics

Configure File Scope (xPC) Blocks

File Scope Usageo,

Create File Scopes Using xPC Target Explorer

Configure File Scopes Using xPC Target Explorer

Log Signal Data into Multiple Files

Configure Outport Logging Using xPC Target

Explorer i e

Configure Outport Logging Using MATLAB

Language i

Configure File Scopes Using MATLAB Language

5-50

5-54

5-58

5-65

5-67

5-70

5-74

5-75

5-77

5-78

5-83

5-85

5-89

Log Signals Using a Web Browser 5-110

Parameter Tuning Basics 5-112

Tune Parameters Using xPC Target Explorer 5-113

Create Parameter Groups Using xPC Target

Explorer e 5-118
Tune Parameters Using MATLAB Language 5-122
Tune Parameters Using Simulink External Mode 5-125
Tune Parameters Using a Web Browser 5-127

Save and Reload Parameters Using MATLAB

Language 5-128
Save the Current Set of Target Application Parameters .. 5-128
Load Saved Parameters to a Target Application 5-129
List the Values of Parameters Storedina File 5-130
Configure Model to Tune Inlined Parameters 5-131

Tune Inlined Parameters Using xPC Target
Explorer e e e 5-134

Tune Inlined Parameters Using MATLAB Language .. 5-139

Nonobservable Signals and Parameters 5-140

Execution Modes

6

Execution Modes 6-2

xi

xii

Interrupt Mode 0 i 6-3

Latencies Introduced by Interrupt Mode 6-3
PollingMode i, 6-5
Introducing Polling Mode 6-5
Setting the Polling Mode 6-7
Restrictions Introduced by Polling Mode 6-10
Controlling the Target Application 6-13
Polling Mode Benchmarks 6-14
Polling Mode and Multicore Processors 6-14

Execution Using MATLAB® Scripts

Contents

Targets and Scopes in the MATLAB Interface

7

Target Driver Objects 7-2
Create Target Objects, 7-3
Display Target Object Properties 7-4
Set Target Object Property Values 7-5
Get Target Object Property Values 7-6
Use Target Object Methods 7-7
Target Scope Objects iiiiiino... 7-8
Display Scope Object Properties for One Scope 7-10

Display Scope Object Properties for the Current
S COPES .ottt e 7-11

Set Scope Property Values 7-12

Get Scope Property Values 7-13
Use Scope Object Methods 7-14
Acquire Signal Data with File Scopes 7-15
Acquire Signal Data into Dynamically Named Files ... 7-16
Scope Trigger Configuration 7-18
Pre- and Post-Triggering of Scopes 7-19
Trigger One Scope with Another Scope 7-21

Scope-Triggered Data Acquisition 7-21

Trigger Sample Setting, 7-24
Acquire Gap-Free Data Using Two Scopes 7-28

Logging Signal Data with FTP and File System

8

Objects
File Systems 8-2
FTP and File System Objects 8-4
Using xpctarget.ftp Objects 8-5
OVeIVIBW o ittt ettt et e e e 8-5
Accessing Files on a Specific Target Computer 8-6
Listing the Contents of the Target Computer Folder 8-7
Retrieving a File from the Target Computer to the Host
CompPULET .+ oottt e e e 8-8

xiii

xiv

10

Contents

Copying a File from the Host Computer to the Target

CompPULEr &« ittt e 8-8
Using xpctarget.fs Objects 8-10
L0 =) T 1= 8-10
Accessing File Systems from a Specific Target Computer .. 8-11
Retrieving the Contents of a File from the Target Computer
to the Host Computer 8-12
Removing a File from the Target Computer 8-15
Getting a List of Open Files on the Target Computer 8-16
Getting Information about a File on the Target
ComMpPULEr & ittt e 8-17
Getting Information about a Disk on the Target
ComMpPULEr & ittt e 8-18

Execution Using Graphical User Interface

9

Models

xPC Target Interface Blocks to Simulink Models 9-2
Simulink User Interface Model 9-2
Creating a Custom Graphical Interface 9-3
To xPC Target Block 9-4
From xPC Target Block, 9-5
Creating a Target Application Model 9-5
Marking Block Parameters 9-6
Marking Block Signals 9-8

Execution Using the Target Computer
Command Line

Target Computer Command-Line Interface 10-2

Using Target Application Methods on the Target
ComPULET .+ v ittt e e e 10-2

Manipulating Target Object Properties from the Target

CompPULEr &« ittt e 10-3
Manipulating Scope Objects from the Target Computer .. 10-4
Manipulating Scope Object Properties from the Target

ComMPULET & ittt e 10-6
Aliasing with Variable Commands on the Target

ComMpPULEr & ettt e 10-6

Execution Using the Web Browser Interface

Web Browser Interface 11-2
Introduction i 11-2
Connecting the Web Interface Through TCP/IP 11-2
Connecting the Web Interface Through RS-232 11-3
Usingthe Main Panec..... 11-6
Changing WWW Propertiesccoviive.... 11-9
Viewing Signals with a Web Browser 11-9
Viewing Parameters with a Web Browser 11-10
Changing Access Levels to the Web Browser 11-11

Troubleshooting
Troubleshooting Procedure 12-2

Confidence Test Failures

13

Test 1: Ping Using System Ping 13-2
Test 2: Ping Using xpctargetping 13-5

Test 3: Reboot Target Computer 13-7

xvi

Test 4: Build and Download xpcosc 13-9

Test 5: Check Host-Target Communications 13-12
Test 6: Download Prebuilt Target Application 13-14
Test 7: Execute Target Application 13-15
Test 8: Upload Data and Compare 13-16

Host Computer Configuration

14

Why Does Boot Drive Creation Halt? 14-2

Target Computer Configuration

15

Contents

Faulty BIOS Settings on Target Computer 15-2
Allowable Partitions on the Target Hard Drive 15-3
File System Disabled on the Target Computer 15-4
Adjust the Target Computer Stack Size 15-5
How Can I Get PCI Board Information? 15-6
How Do I Diagnose My Board Driver? 15-7

Host-Target Communication

16

Is There Communication Between the Computers? ... 16-2
Boards with Slow Initialization 16-4
Timeout with Multiple Ethernet Cards 16-6
Recovery from Board Driver Exrrors 16-8
How Can I Diagnose Network Problems? 16-9

Target Computer Boot Process

17

18

Why Won’t the Target Computer Boot? 17-2
Why Won’t the Kernel Load? 17-4
Why Is the Target Medium Not Bootable? 17-5
Why Is the Target Computer Halted? 17-6

Modeling
How Do I Handle Encoder Register Rollover? 18-2
How Can I Write Custom Device Drivers? 18-3

xXvii

xviii

Model Compilation

19

Requirements for Standalone Target Applications 19-2
Compiler Errors from Models Linked to DLLs 19-3
Compilation Failure with WATCOM Compilers 19-4

Application Download

20

Why Does My Download Time OQut? 20-2
Increase the Time for Downloads 20-4
Why Does the Download Halt? 20-5

Application Execution

21

Contents

View Application Execution from the Host 21-2
Sample Time Deviates from Expected Value 21-3
What Measured Sample Time Can I Expect? 21-5
Why Has the Stop Time Changed? 21-6
Why Is the Web Interface Not Working? 21-7

Application Parameters

22|

Why Does the getparamid Function Return
Nothing? i 22-2

Which Model Parameters CanI Tune? 22-3

23|

How Do I Fix Invalid File IDs? 23-2

Which Model Signals Can I Access? 23-3

Application Performance

24

How Can I Improve Run-Time Performance? 24-2

Why Does Model Execution Produce CPU

Overloads? i 24-4
How Small Can the Sample Time Be? 24-6
Can I Allow CPU Overloads? 24-7

Xix

XX

Contents

Getting MathWorks Support

25|

Where Is the MathWorks Support Web Site? 25-2
How Do I Get a Software Update? 25-3
What Should I Do After Updating Software? 25-4
How Do I Contact MathWorks Technical Support? 25-5

Tuning Performance

26

Building Referenced Models in Parallel 26-2
Multicore Processor Configuration 26-4
Profiling Target Application Execution 26-6

Configuring Your Model to Collect Profile Data During
Executiont 26-6
Displaying and Evaluating Profile Data 26-7
Functions

27

Configuration Parameters

28

Setting Configuration Parameters 28-2

xPC Target options Pane 28-3

Automatically download application after building 28-4
Download to default target PC 28-5
Specify target PCnameccvivio... 28-6
Name of xPC Target object created by build process 28-7
Use default communication timeout 28-8
Specify the communication timeout in seconds 28-9
Executionmode i 28-10
Real-time interrupt source, 28-11
I/0 board generating the interrupt 28-12
PCI slot (-1: autosearch) or ISA base address 28-16
Log Task ExecutionTime 28-17
Signal logging data buffer size in doubles 28-18
Enable profiling 28-20
Number of events (each uses 20 bytes) 28-21
Double buffer parameter changes 28-22

Load a parameter set from a file on the designated target
file systemiii i . 28-24
Filenamet i 28-25
Build COM objects from tagged signals/parameters 28-26
Generate CANape extensionsoeeeeeeeeeeen.. 28-27
Include model hierarchy on the target application 28-28
Enable Stateflow animation 28-29
Index

xxi

xxii Contents

Model Architectures

xPC Target™ models are Simulink® models that use special blocks
and architectures.

¢ Chapter 1, “FPGA Models”
¢ Chapter 2, “Vector CANape Support”

¢ Chapter 3, “Incorporating Fortran S-Functions”

FPGA Models

¢ “FPGA Support” on page 1-2

¢ “FPGA Programming and Configuration” on page 1-4

¢ “Simulink Domain Model” on page 1-6

¢ “FPGA Subsystem Plan” on page 1-8

¢ “FPGA Target Configuration” on page 1-11

o “FPGA Target Interface Configuration” on page 1-13

¢ “FPGA Target Frequency Configuration” on page 1-15

o “xPC Target Interface Subsystem Generation” on page 1-17
¢ “xPC Target Domain Model” on page 1-21

¢ “xPC Target Interface Subsystem Integration” on page 1-23
e “Target Application Execution” on page 1-25

¢ “Interrupt Configuration” on page 1-26

¢ “FPGA Synchronization Modes” on page 1-29

1 FPGA Models

FPGA Support

xPC Target and HDL Coder™ software enable you to implement Simulink

algorithms and configure I/O functionality on Speedgoat field programmable

gate array (FPGA) boards. Speedgoat I/O FPGA boards are sold as part of

xPC Target Turnkey systems. For xPC Target Turnkey hardware, see
http://www.mathworks.com/products/xpctarget/supported-hardware/index.html.

xPC Target supports the following Speedgoat boards.

Board Description

Speedgoat 10301 Xilinx® Virtex-II, 6912 logic cells, 64 TTL
1/0 lines

Speedgoat 10302 Xilinx Virtex-II, 6912 logic cells, 32 RS-422
I/0 lines

Speedgoat 10303 Xilinx Virtex-II, 6912 logic cells, 16 TTL and
24 RS-422 1/0 lines

Speedgoat 10311 Xilinx Virtex-II, 24192 logic cells, 64 TTL
I/0 lines

Speedgoat 10312 Xilinx Virtex-II, 24192 logic cells, 32 RS-422
I/0 lines

Speedgoat 10313 Xilinx Virtex-II, 24192 logic cells, 16 TTL
and 24 RS-422 1/0 lines

Speedgoat 10314 Xilinx Virtex-II, 24192 logic cells, 32 LVDS
I/0 lines

Speedgoat 10325 Xilinx Virtex-4 chip, 41472 logic cells, 64
LVCMOS or 32 LVDS (four are input only)
I/0 lines, two 16-bit 105 MHz analog input
channels

Speedgoat 10331 Xilinx Spartan 6 chip, 147333 logic cells, 64
LVCMOS or 32 LVDS 1/0 lines

To work with FPGAs in the xPC Target environment, you must:

1-2

http://www.mathworks.com/products/xpctarget/supported-hardware/index.html

FPGA Support

¢ Install HDL Coder and Xilinx ISE. For the specific ISE version required,
see the Speedgoat board documentation. For more information, see “Tool
Setup” in the HDL Coder documentation.

¢ Install the Speedgoat FPGA I/0O board in the target computer.

¢ Be familiar with FPGA technology. In particular, you must know the clock
frequency and the I/O connector pin and channel configuration of your

FPGA board.

e Have experience using data type conversion and designing Simulink

fixed-point algorithms.

To generate HDL code for your FPGA target, you do not need to have HDL

programming experience.

The xPC Target product provides the following FPGA applications as

examples.

Example

Description

Servo Control with the
Speedgoat I0301 FPGA
Board

Shows programming and configuring the
Speedgoat 10301 with a simple PWM servo
controller, hardware counter, and digital I/O.

Digital I/O with the
Speedgoat I0303 FPGA
Board

Shows programming and configuring the
Speedgoat 10303 for digital I/0.

1 FPGA Models

1-4

FPGA Programming and Configuration

To implement Simulink algorithms on a Speedgoat FPGA I/O board, you use
“HDL Workflow Advisor” to specify an FPGA board and its I/O interface,
synthesize the Simulink algorithm for FPGA programming, and generate
an xPC Target interface subsystem model. The interface subsystem model
contains blocks to program the FPGA and communicate with the FPGA 1/0
board during target application execution. You add the generated subsystem
to your xPC Target domain model.

The workflow looks like this figure.

FPGA Model

FPGA
Subsystem

xPCgTarget Model

xPC Target
interface

subsystem \

create bitstream

Target PC

x86 running

PCI
[

TTL
/0 FPGA |‘\

xPC Target kernel load bitstream

FPGA Programming and Configuration

Before you begin this procedure, you must have completed the following:

¢ “Simulink Domain Model” on page 1-6

e “FPGA Subsystem Plan” on page 1-8

This procedure uses example Servo Control with the Speedgoat I0301
FPGA Board.

1 “FPGA Target Configuration” on page 1-11

2 “FPGA Target Interface Configuration” on page 1-13

3 “FPGA Target Frequency Configuration” on page 1-15

4 “xPC Target Interface Subsystem Generation” on page 1-17
5 “xPC Target Domain Model” on page 1-21

6 “xPC Target Interface Subsystem Integration” on page 1-23

The next task is “Target Application Execution” on page 1-25.

1 FPGA Models

Simulink Domain Model

1-6

The Simulink FPGA domain model contains a subsystem (algorithm) to be
programmed onto the FPGA chip. Using this model, you can test your FPGA
algorithm in a simulation environment before you deploy the algorithm to

an FPGA board.

1 Create a Simulink model to contain the algorithm that you want to load
onto the FPGA.

2 Place the algorithm to be programmed on the FPGA inside a Subsystem
block. The model can include other blocks and subsystems for testing.
However, one subsystem must contain the FPGA algorithm.

3 Set or confirm the subsystem inport and outport names and data types.

The HDL Workflow Advisor uses these settings for routing and mapping
algorithm signals to I/O connector channels. See “FPGA Subsystem Plan”

on page 1-8.
4 Save the model.

This model is your FPGA domain model. It represents the simulation sample
rate of the clock on your FPGA board. For example, the Speedgoat 10301 has
an onboard 33MHz clock. One second of simulation equals 33e6 iterations
of the model.

For an example of an FPGA domain model, see dxpcSGI0301servo_fpga. The
ServoSystem subsystem contains the FPGA algorithm.

Simulink® Domain Model

P} depcSGIO30lservo_fpga * ==

File Edit View Display Diagram Simulation Analysis Code Tools Help

% - @ EHE QO P ¢+ @ owe m] O -
dxpcSGI0301servo_fpga

[P dxpesGIO30Lservo_fpga b hd
= 0 to 180 (deg)
360 (autorotate ON)
720 (autorotate OFF)
Motor Command
|360 Motor Cmd P/t Signal 'I - 40 I > I:l
— o]
ﬁﬁ —brw[os'le)T'—b LED1 Cmd
Scopel
- HW Counter L l:l -
Display
> L 4000
L[]
> L 4000
Scope2
> L 4000 °
ServoSystem
Copyright 2010 The MathWorks, Inc.
»
Ready 125% FixedStepDiscrete

1 FPGA Models

FPGA Subsystem Plan

Before you start working with the HDL Workflow Advisor, you must plan how
to prepare the FPGA subsystem for HDL code generation and FPGA synthesis.

Target Device

You must decide which FPGA to target for code generation. The example
procedure uses the FPGA Turnkey target workflow and the Speedgoat 10301
FPGA 10 board for target platform. These choices require that you use the
Xilinx ISE synthesis tool.

For information about other target devices, see “Supported Third-Party Tools
and Hardware”.

FPGA Synchronization Mode

To select the processor/FPGA synchronization mode, you must decide which of
the FPGA synchronization modes to use:

® Free running

® Coprocessing blocking

® Coprocessing nonblocking with delay

For more information, see “FPGA Synchronization Modes” on page 1-29.

FPGA Inports and Outports

Inports and outports may transmit signal data between the target computer
and the FPGA over the PCI bus or map to I/O channels for communicating
with external devices. For connector pin and I/O channel assignments of your
supported FPGA I/0 board, see the board reference page for your board.

In addition to the Port Name and Port Type (Inport or Outport), to specify
the I/0 interface, see:

¢ Data Type—Encodes such attributes as width and sign. Data types must
map consistently to their corresponding I/O pins. An inport of type Boolean
requires 1 bit, one of type uint32 requires 32 bits, and so on. For example,

FPGA Subsystem Plan

you cannot connect an inport of type uint32 to an FPGA I/0 interface of
type TTL I/0 channel [0:7]; it requires TTL I/0 channel [0:31].

¢ Target Platform Interfaces—Encodes the I/O channels on the FPGA as
well as their functional type. For a single-ended interface (TTL, LVCMOS),
one channel maps to one connector pin. For a differential interface (RS422,
LVDS), one channel maps to two connector pins. To discover the mapping
for a particular pin, see the pin connector map provided with the board
description.

I/0 channels may also map to a predefined specification or role (PCI
Interface, Interrupt from FPGA).

For information on using FPGA interrupts, see “Interrupt Configuration”
on page 1-26.

¢ Bit Range/Address/FPGA Pin—Encodes the pins on the target
platform to which the inports and outports are assigned, along with the
channel number used by the port. For specification PCI Interface, Bit
Range/Address/FPGA Pin encodes the PCI address used by the port.

If vector inports or outports are required, specify a vector port:
e Inport — Add a mux outside the subsystem that connects to a demux

inside the subsystem.

e Outport — Add a mux inside the subsystem that connects to a demux
outside the subsystem.

e Inport and Outport — Configure the port dimension to be greater than 1.

Workflow Advisor automatically inserts a strobe to achieve a simultaneous
update of vector elements.

If you have specified vector inports or outports, before generating code, you
must select the Scalarize vector ports check box. This check box is on
the Coding style tab of node Global Settings, under node HDL Code
Generation in the Configuration Parameters dialog box.

FPGA Clock Frequency

The FPGA system clock frequency defaults to the fixed FPGA input clock
frequency shown in the FPGA input clock frequency (MHz) box. You can

1-9

1 FPGA Models

1-10

specify another frequency in the FPGA system clock frequency (MHz)
box. If the FPGA cannot generate the specified value exactly, HDL Workflow

Advisor generates the closest match, Foystem based on the following formula:

F,

system

= Fyppus * ClkFxMultiply | CIkFxDivide

Finput is the fixed FPGA input clock frequency. C1kFxMultiply and
ClkFxDivide are integers.

FPGA Target Configuration

FPGA Target Configuration

This procedure uses the dxpcSGI0301servo_fpga example. You must have
already created an FPGA subsystem (algorithm) in an FPGA domain model
and developed an FPGA subsystem plan. See “Simulink Domain Model” on
page 1-6 and “FPGA Subsystem Plan” on page 1-8.

1 Open the FPGA domain model dxpcSGI0301servo_fpga.

2 In the FPGA model, right-click the FPGA subsystem (ServoSystem). From
the context menu, select HDL Code > HDL Workflow Advisor.

The HDL Workflow Advisor dialog box displays a number of tasks for
the subsystem. You need to address only a subset of the tasks.

3 Expand the Set Target folder and select task 1.1 Set Target Device
and Synthesis Tool.

4 Set Target Workflow to FPGA Turnkey.

5 From the Target platform drop-down list, select the Speedgoat FPGA 1I/0
board installed in your target computer.

For the dxpcSGI0301servo_fpga example, this is Speedgoat I0301 FPGA
I0 board (Acromag PMC-DX501).

6 Click Run This Task.

1-11

1 FPGA Models

1-12

i HOL Workfiow Advisor - pcSEIDNIL servd_fpgarSenosysten fell@im]
Findi -
4 L5§ WL Wetklhow Advi s fi)
4 0 L St Target Analyss (~Triggers Update Dlagram) a
@ #1.1. Set Torget Device and Smthesis Tost o L Toul for HOL
[*1.2. Set Target Intertace lrout Farameters
L 1R Tt Tmigget Frequeerscy = e [FPGAT .]
B 2 Prepae Madel Far HDL Code Generation _
0§ 3 mOL Code Generation | A4] | anrh Board Manager]
) 4 FPGA Sythesis and Analpi
- 8 5 Cownioad to target [152 3|
Famiy | Vriesd e =
Padage | 44 5 5
Preject folder hell_pry L
] St Target iy (o St symithesis sper)
| oo T
Benit: (G Pacsed
Passed Set Target Device and Synthesis Tool
() Model advasor
15}, Code e aor: Obirctves
(4 Ungrade advser -
(i) Performance Advsor ! : —
(e | [t]

The next task is “FPGA Target Interface Configuration” on page 1-13.

FPGA Target Interface Configuration

FPGA Target Interface Configuration

This procedure uses the dxpcSGI0301servo_fpga example. You must have
already developed an FPGA subsystem plan and configured the FPGA target.
See “FPGA Subsystem Plan” on page 1-8 and “FPGA Target Configuration”
on page 1-11.

1 In the Set Target folder, select task 1.2 Set Target Interface.
2 In the Processor/FPGA synchronization box, select Free running.

For information about FPGA synchronization modes, see “FPGA
Synchronization Modes” on page 1-29.

3 For signals from the FPGA through I/0 lines (channels) — In the Target
Platform Interfaces column, select the required I/O channel type (for
example, TTL I/0 Channel [0:63]).

In the Bit Range/Address/FPGA Pin column, enter the channel value
for each signal.

4 For signals between the target computer and the FPGA — In the Target
Platform Interfaces column, select PCI Interface.

In the Bit Range/Address/FPGA Pin column, use the automatically
generated values. Do not enter PCI address values.

5 After specifying interfaces for the required signals, click Run This Task.

1-13

1 FPGA Models

1-14

=)

1.2. Set Tarpet Intertace
4 L ML Warkfiow Advider
« U 1. Set Target L
@ *1.1, Set Targes Device and Synthesis Tool Sxi bwpet inkerfacs for HOL eode peneration
© 41250t gt Intetace. P
] 13,56t Target Frequency Frocessor P synchvongason |Free runnng -
(5 2. Prepare Medel For HOL Code Genenation L g
) 3. HDL Codr Generation Target platfom nterface table
+ G 4, 1PGA Syrinein and Analyii. Fuuet Hame Port Type Dlsta Type Targget Plathorm intedaces Wit Range | Addiess | FRGA Piey al
. D
5 i 1o g Meter Cmd Inpent ufedd | PClintedace 810"
LED Cmdl Inpart boolean | PCHinkedace. HI"
LEDZ Coned Inpart boclean (POl interface: T HIH
LED2 Cmdl Inport boclesn | PClintertace CEIGCT
LED4 Cmd Inpot boclesn |PClinterface YELIY B
PWM Signal Outport boolean | TTLMO Channel [63]]
Sarvo Cmd Outpord il TIL W0 Channel [363] a4
HW Couster Cutport el TTL VO Channed (063 %2
LEDL Outport boclean | TTL VO Channe [8:63] =
LED2 Dutport boclean | TTLUO Channel [0:63] 14
LEDS Outpont boclesn | TTLLOC 163 1251 >
R T Task.
(@) o Besir: @ Passed
gl Code Generaton Cbpectves Passed Set Target Interface Table.
|G Lngrade Advaar

"

For more information on mapping Speedgoat FPGA 1/0 pins in HDL Workflow
Advisor, see “Set the Target Interface for Speedgoat Boards”.

The next task is “FPGA Target Frequency Configuration” on page 1-15.

FPGA Target Frequency Configuration

FPGA Target Frequency Configuration

This optional procedure uses the dxpcSGI0301servo_fpga example. You
must have already developed an FPGA subsystem plan and configured the
FPGA target interface. See “FPGA Subsystem Plan” on page 1-8 and “FPGA
Target Interface Configuration” on page 1-13.

1 In the Set Target folder, select task 1.3 Set Target Frequency (optional).

The Set Target Frequency pane contains fields showing the FPGA input
clock frequency (fixed) and the FPGA system clock frequency. The FPGA
system clock frequency defaults to the FPGA input clock frequency.

2 To specify a different system clock frequency (for example, 50 MHz), type
the new value in the field FPGA system clock frequency (MHz). For
the permitted range for the system clock rate, see the Speedgoat board
characteristics table.

The system may set a value different from the one you specified. For more
information, see “FPGA Clock Frequency” on page 1-9.

3 Click Run This Task.

1-15

1 FPGA Models

) HDL Workflow Advisor - dxpcSGIO301servo_fpga/ServoSystem
| File | Edit Run Settings Help

Find: By
— 1.3. Set Target Frequency
4 [HDL Workflow Adviser -
nalysis B
4 [1. set Target & =
Set Target Frequency

*1.1. Set Target Device and Synthesis Tool
@ ~1.2.Set Target Interface Input Parameters
@ 13. Set Target Frequengy
2. Prepare Model For HDL Code Generation
3. HDL Code Generation FPGA system dock frequency (MHz) 50
4, FPGA Synthesis and Analysis
5. Download to Target

FPGA input dock frequency (MHz) | 32

FSEH

m

Result: @) Passed

Info: The closest available output frequency of the clock module is 50.286 MHz, which is different fro
system clock frequency.

#2## Info: the DCM params are CLKFX_MULTIPLY = 32; CLKFX_DIVIDE = 21. b

Passed Set Target Frequency.

(£) Model Advisor

Code Generation Objectives

(@l Uparade Advisor

The next task is “xPC Target Interface Subsystem Generation” on page 1-17.

1-16

xPC Target™ Interface Subsystem Generation

xPC Target Interface Subsystem Generation

This procedure uses the dxpcSGI0301servo fpga example. You must
have already configured the FPGA target interface and the required target
frequency. If you have specified vector inports or outports, you must have
already selected the Scalarize vector ports check box. This check box is
on the Coding style tab of node Global Settings, under node HDL Code
Generation in the Configuration Parameters dialog box.

1 Expand the Download to Target folder, and right-click task 5.2
Generate xPC Target Interface.

2 In this pane, click Run To Selected Task.
This action:

¢ Runs the remaining tasks.

¢ (Creates the FPGA bitstream file in the hd1lsrc folder. The xPC Target
interface subsystem references this bitstream file during the build and
download process.

® Generates a model named gm_fpgamodelname_ xpc, which contains the xPC
Target interface subsystem.

1-17

1 FPGA Models

1-18

HDL Workflow Advisor looks like this figure.

|2} HDL Workflow Advisor - dpeSGIO301servo_fpga/ServoSystem

I_F_:r_lg_| Edit Run Settings Help

Find: - a5

5.2 G te xPC Target interface

4 |58 HDL Warkflow Advisor
a |§ 1. Set Target
o #1.1. Set Target Device and Synthesis Tool
0 #1.2, Set Target Interface
@ 13 setTarget Frequency
4 |§ 2. Prepare Model For HDL Code Generation
@ 2.1. Check Global Settings
0 42,2, Check Algebraic Loops
o 2.3, Check Block Compatibility
o A2.4. Check Sample Times
4 [5g) 3. HDL Code Generation
4 b_i 3.1. 5et Code Generation Options
@ 311, Set Basic Options
@ 312 set Advanced Options
@ 3.1.3. Set Testbench Options
o #3.2, Generate RTL Code and Testbench
'L_.ﬁ 4, FPGA Synthesis and Analysis
o 4.1. Create Project
4 L@ 4.2, Perform Synthesis and P/R
@ 421, Perform Logic Synthesis
o 4.2.2. Perform Mapping
o 4,23, Perform Place and Route
4 I5g) 5. Download to Target
@ 5. Generate Programming File

1Y

|b 5.2. Generate xPC Target interface

@ Model Advisor
Code Generation Objectives

@I Upgrade Advisor

Analysis
Generate xPC Targetinterface

i

Result: @ Passed
Passed Generate xPC Target Interface.
Generating new xPC Target interface model: gm dxpcSGIO301servo fpga spc

xPC Target Interface Model Generation Complete.

m

Apply

xPC Target™ Interface Subsystem Generation

The generated interface subsystem looks like this figure.

"ﬁ gm_ﬁpcé@bﬂ)im_fpga_mc*
File Edit View Display Diagram Simulation Analysis Code Tools Help

] = (i 5 T |
- @ HO-E-4OP » @ wos e -] @
| gm_dxpcSGI030 1servo_fpga_xpc | .
® Egm_dxpcSGIO3ﬂlservo_fpga_xpc

Generated by HDL Workflow Advisor on 12-Nov-2012 15:55:23

0 to 180 (deg) [FPGAboard dlock frequency 33MHz |
IEI |

360 (autorotate ON)
720 (autorotate OFF)

Motor Command
ouble double
uble
uble bl double double
2 double £ K- e S 40
binit uble oolean oolean
IR sl) ouble l:l Scope
uble boolean ouble Display double
i U(Usﬁa" > | 4000
ouble doulple
M l ouble W
> 4000
—
i |double oolean oolean ouble doutple Scope2
i sl > L 4000

ServoSystem

Copyright 2010 The Math\Works, Inc.

»

Ready 125% FixedStepDiscrete

This generated model contains a masked subsystem with the same name as
the subsystem in the Simulink FPGA domain model. Although the appearance
is similar, this subsystem does not contain the Simulink algorithm. Instead,
the algorithm is implemented in an FPGA bitstream. You reference and load
this algorithm into the FPGA from this subsystem.

1-19

1 FPGA Models

The next task is “xPC Target Domain Model” on page 1-21.

1-20

xPC Target™ Domain Model

xPC Target Domain Model

The xPC Target software enables you to execute Simulink and

Stateflow® models on a target computer for rapid control prototyping,
hardware-in-the-loop (HIL) simulation, and other real-time testing
applications. You can also include Speedgoat FPGA I/0 boards in your design.
Either before or after you have created the FPGA domain model and the xPC
Target interface subsystem using HDL Workflow Advisor, create an xPC
Target domain model in which you include the interface subsystem.

1 Create a Simulink model with the functionality that you want to simulate
in conjunction with the FPGA algorithm. This model, referred to as the
xPC Target domain model, runs in real time on the target computer. The
xPC Target model and the FPGA algorithm communicate over the PCI bus.

2 Save the model.

In example model dxpcSGI0301servo_xpc, the disconnected signals connect
to the inports and outports of the xPC Target interface subsystem.

1-21

1 FPGA Models

3 i - =)
File Edt View Display Disgram Seulation Anslysie Code Took Melp

&%-® Ee-BL o n oo — T

me)@c

= .mdlp‘(ﬂ[,ﬂ!u‘\u_lpq -
5 ot w5)

R ¥PC Target domain: 1KHz

o oooo [

=) 00 b User Inforface

I e D e

= Insert

(G} Gwmeraed
*PC Target

> Interface o

Bociesn 1 Model
HERE

double

double JlJ 5%5;““” |

double

[Wﬁiéﬁﬁaﬁ

1

|

|

${ double *

Copynght 2010 The MathWorks, Inc.

Fieady 126% FruedStepDiscrete

The next task is “xPC Target Interface Subsystem Integration” on page 1-23.

1-22

xPC Target™ Interface Subsystem Integration

xPC Target Interface Subsystem Integration

Before doing this procedure, you must have already generated an xPC Target
interface subsystem with the HDL Coder software. If you have not yet done
so, see “xPC Target Interface Subsystem Generation” on page 1-17.

You need to set three parameters in the xPC Target interface subsystem mask:

® Device index
e PCI slot

® Sample time

In addition, you must evaluate the communication timeout requirements for
your model. The default communication timeout of 5 seconds may not be long
enough to download and program a large FPGA, such as the 10331.

1 In the Simulink editor, open gm_fpgamodelname_xpc.

2 Copy and paste the this subsystem, xPC Target interface subsystem, into
the xPC Target domain model.

3 Save or discard gm_fpgamodelname_xpc. You can recreate it as required
using the HDL Workflow Advisor.

4 In the xPC Target domain model, connect signals to the inports and
outports of the xPC Target interface subsystem.

5 Set the block parameters according to the FPGA I/O boards in your target
computer.

¢ If you have a single FPGA 1/0 board, leave the device index and PCI
slot at the default values. You can set the sample time or leave it at —1
for inheritance.

¢ [f you have multiple FPGA I/O boards, give each board a unique device
index.

¢ If you have two or more boards of the same type (for example, two
10301s), specify the PCI slot ([bus, slot]) for each board. Get this
information with the xpctarget.xpc.getxpcpci function.

1-23

1 FPGA Models

6 If you need a larger communication timeout, in the Configuration
Parameters dialog box for the model, expand the Code Generation and
xPC Target options nodes, clear the Use default communication
timeout check box, and then enter a new value in the Specify the
communication timeout in seconds box.

7 Save the model.

For an example of an xPC Target domain model that has the interface
subsystem pasted and connected, see dxpcSGI0301servo_xpc_wiss.

P dpesGI0301 servo_xpe_wiss " [E=SEcR ===

File Edit View Display Disgram Semulation Ansbysic Code Took Help
-9 BEa-E P o - [Extermal Y] @~ i

hOCSGI0 N0 Leerv_xpe_wiss

B Al dapeSGIOH e _xpe _wiss -

EUWER

«PC Target domain: 1KHz

360 (autorotate OM)
720 (autorotate OFF)

-
e e
double |

Copyrght 209 The MalhWorks, Inc.

Feady 126% FaedStepDiscrete |

You are now ready to build and download the xPC Target domain model.
Continue with “Target Application Execution” on page 1-25.

1-24

Target Application Execution

Target Application Execution

To do this procedure, you have already created an xPC Target domain model
that includes an xPC Target interface subsystem generated from the HDL
Workflow Advisor. If you have not yet done so, see “xPC Target Interface
Subsystem Integration” on page 1-23.

1 Configure the target computer and connect it to the host computer.

2 Build and download the xPC Target model. The xPC Target model loads
onto the target computer and the FPGA algorithm bitstream loads onto
the FPGA.

3 If you are using I/O lines (channels), confirm that you have connected the
lines to your external hardware under test.

The start and stop of the xPC Target model controls the start and stop of
the FPGA algorithm. The FPGA algorithm executes at the clock frequency
of the FPGA 1/0 board, while the application executes in accordance with
the model sample time.

1-25

1 FPGA Models

1-26

Interrupt Configuration

xPC Target software schedules the target application using either the internal
timer of the target computer (default) or an interrupt from an I/O board.

You can use your Speedgoat FPGA board to generate an interrupt, which
allows you to:

® Schedule execution of the target application based on this interrupt
(synchronous execution). For this method, you must generate the interrupt
periodically.

* Execute a designated subsystem in your target application (asynchronous

execution).

To use FPGA-based interrupts, set up and configure the FPGA domain and
xPC Target domain models.

FPGA Domain Model

In the FPGA domain subsystem, create the interrupt source execution of the
target application in one of the following ways.

Source Description

Internal A clock you create using Simulink blocks to create input
signals. This clock is a binary pulse train of zeros and ones
(transition from O to 1 and vice versa). The clock generates an
interrupt on a rising edge. The following is an example of an
internally generated interrupt source from Simulink blocks.
Connect the internally generated interrupt source to an outport
labelled INT.

nbernapd Source
ims

External | A clock signal that comes from a device outside the target
computer. You use a digital input pin to connect to this
signal. The following is an example of an externally generated

Interrupt Configuration

Source Description

interrupt source that comes from TTL channel 8. Delay this

source by one FPGA clock cycle and connect to an outport
labeled INT.

CO—

EXT INT TTL C&

(D

NT

P‘II—'

In both cases, wire the interrupt source to an outport in the FPGA subsystem
and assign the outport as Interrupt from FPGA in the HDL Workflow
Advisor task 1.2 Set Target Interface.

You are now ready to set up interrupt support in the xPC Target domain
model. See “xPC Target Domain Model” on page 1-27.

xPC Target Domain Model

If you have not yet done so, for overview information, see “FPGA Domain
Model” on page 1-26.

Configure the model xPC Target domain model to set up interrupt support:

1 Open the xPC Target domain model.

2 In the Simulink editor, select Simulation > Model Configuration
Parameters.

3 Navigate to node xPC Target options, under node Code Generation.

4 From the Real-time interrupt source list, select one of the following:
® Auto (PCI only)
¢ The IRQ assigned to your FPGA board

5 From the I/0 board generating the interrupt parameter, select your
FPGA board, for example, Speedgoat_I0301.

6 Add the xPC Target interface subsystem to the model (see “xPC Target
Interface Subsystem Integration” on page 1-23).

1-27

1 FPGA Models

7 Build and download the application to the target computer.

8 When you start the target application, simulation updates occur when the
application receives an interrupt from the FPGA I/O board.

1-28

FPGA Synchronization Modes

FPGA Synchronization Modes

In xPC Target, an FPGA operates in three synchronization modes:

® Free running
® Coprocessing blocking

® Coprocessing nonblocking with delay

e Free running (default) — The CPU and the FPGA each run
nonsynchronized, continuously, and in parallel. When you want the CPU
to run continuously without interrupts, select this mode. For example,
you could select this mode when the model is processing continuous PWM
output.

The target computer CPU strobes data out of the FPGA, reads the results
from the FPGA outputs, writes data to the FPGA inputs, and strobes the
data into the FPGA.

Target
CPU FPGA

Send Read Strobe

>

Latch FPGA Data into Outputs

Read Data from Outputs

Write Input Data to Inputs

Send Write Strobe

>

Latch Input Data into FPGA

~——— Sample Time ——

Send Read Strobe

Latch FPGA Data into Outputs

1-29

1 FPGA Models

e Coprocessing blocking — The CPU and the FPGA run synchronized
and in tandem. When the FPGA execution time is short compared to the
target computer sample time, and you want the FPGA to complete before
the model continues, select this coprocessor mode.

The CPU writes data to the FPGA inputs, strobes the data into the FPGA,
waits for the FPGA to finish executing, and reads the result out of the
FPGA outputs.

Target
CPU FPGA

Write Input Data to Inputs

A 4

Send Write Strobe

>

Latch Input Data into FPGA

Detect Done Assert Done

Latch FPGA Data into Outputs

Read Data from Outputs

~<~—— Sample Time —

Write Input Data to Inputs

® Coprocessing nonblocking with delay — The CPU and the FPGA
run synchronized and in tandem. When the FPGA execution time is long
compared to the target computer sample time, select this coprocessor
mode. For example, you could select this mode to manage multiple FPGAs

effectively in parallel.

The CPU waits for the FPGA to finish executing, reads the data from the
previous time step, writes new data to the FPGA inputs, and strobes the
data into the FPGA.

1-30

FPGA Synchronization Modes

Target
CPU

Detect Done

FPGA

Assert Done |_|

Read Data from Outputs

Latch FPGA Data into Outputs

Write Input Data to Inputs

Send Write Strobe

~<—— Sample Time ——

Detect Done

Latch Input Data into FPGA

Assert Done

Latch FPGA Data into Outputs

1-31

1 FPGA Models

1-32

Vector CANape Support

This topic describes how to use xPC Target to interface the target
computer to the Vector CAN Application Environment (CANape®)
(http://www.vector-worldwide.com) using the Universal Calibration
Protocol (XCP). This documentation includes the following topics:

* “Vector CANape” on page 2-2

® “Configuring the Model for Vector CANape” on page 2-4
¢ “Event Mode Data Acquisition” on page 2-11

http://www.vector-worldwide.com

2 Vector CANape® Support

2-2

Vector CANape

In this section...

“Vector CANape Basics” on page 2-2

“xPC Target and Vector CANape Limitations” on page 2-3

Vector CANape Basics

You can use a target computer as an electronic control unit (ECU) for a Vector
CANape system. Using a target computer in this way, a Vector CANape
system can read signals and parameters from a target application running on
the target computer.

The xPC Target software supports polling and event driven modes for
data acquisition. Polling mode data acquisition is straightforward. Event
mode data acquisition requires additional settings (see “Event Mode Data
Acquisition” on page 2-11).

Note This documentation describes how to configure xPC Target and Vector
CANape software to work together. It also assumes that you are familiar with
the Vector CANape product family. See http://www.vector-cantech.com
for further information about the Vector CANape products.

The xPC Target software works with Vector CANape version 5.6 and higher.
To enable a target computer to work with Vector CANape software, you
need to:

¢ Configure Vector CANape to communicate with the xPC Target software
as an ECU.

¢ Enable the xPC Target software to generate a target application that can
provide data compliant with Vector CANape.

® Provide a standard TCP/IP physical layer between the host computer and
target computer. The xPC Target software supports Vector CANape only
through TCP/IP.

http://www.vector-cantech.com

Vector CANape®

To support the XCP communication layer, the xPC Target software provides:

e An XCP server process in the target application that runs on-demand in
the background.

® A generator that produces A2L (ASAP2) files that Vector CANape can load
into the Vector CANape software database. The generated file contains
signal and parameter access information for the target application.

xPC Target and Vector CANape Limitations

The xPC Target software supports the ability to acquire signal data at the
base sample rate of the model. The xPC Target software does not support the
following for Vector CANape:

e Vector CANape start and stop ECU (target computer) commands

Tip To start and stop the application on the target computer, use the xPC
Target start and stop commands, for example tg.start, tg.stop.

e Vector CANape calibration commands or flash RAM calibration commands

e Multiple simultaneous Vector CANape connections to a single target
computer

2 Vector CANape® Support

2-4

Configuring the Model for Vector CANape

In this section...

“Setting Up and Building the Model” on page 2-4

“Creating a New Vector CANape Project” on page 2-5
“Configuring the Vector CANape Device” on page 2-6
“Providing A2L (ASAP2) Files for Vector CANape” on page 2-9

Setting Up and Building the Model

Set up your model to work with Vector CANape. The following procedure uses
the xpcosc model. It assumes that you have already configured your model
to generate xPC Target code. If you have not done so, see “Set Configuration
Parameters” and “xPC Target Options Configuration Parameters” on page 4-3.
It also assumes that you have already created a Vector CANape project. If you
have not done so, see “Creating a New Vector CANape Project” on page 2-5.

1 In the MATLAB® Command Window, type

Xpcosc

2 Open the xPC Target library. For example, in the MATLAB window, type

xpclib

3 Navigate to the Misc sublibrary and double-click that library.
4 Drag the XCP Server block to the xpcosc model.
This block enables an XCP server process to run in the target application.

5 In the model, double-click the XCP Server block. Check the following
parameters:

¢ Target Address — Target IP address for target computer. The default
value is getxpcenv(TcpIpTargetAddress'). Typically, you will want
to leave the default entry. Otherwise, enter the TCP/IP address for the
target computer.

Configuring the Model for Vector CANape®

e Server Port — Port for communication between target computer and
XCP server. The default value is 5555. This value must be the same as
the port number you specify for the Vector MATLAB device.

6 If you want to use the event mode to acquire signal data, set the priority
of the xcpserver block to be the lowest priority. For example, enter a
priority of 10000000. For Simulink blocks, the higher the priority number,
the lower the priority.

7 In the model Simulink window, click Simulation > Model Configuration
Parameters.

The Configuration Parameters dialog box is displayed for the model.
8 In the left pane, click the xPC Target options node.
The associated pane is displayed.

9 In the Miscellaneous options area, select the Generate CANape
extensions check box.

This option enables target applications to generate data, such as that for
A2L (ASAP2), for Vector CANape.

10 Build the model.

The xPC Target software builds the target application, including an A2L
(ASAP2) data file for the target application.

11 On the target computer monitor, look for the following message. These
messages indicate that you have built the target application without
producing an error and can now connect to the target with Vector CANape.

XCP Server set up, waiting for connection

You can now create a new Vector CANape project (see “Creating a New Vector
CANape Project” on page 2-5.

Creating a New Vector CANape Project

This procedure describes how to create a new Vector CANape project that
can communicate with an xPC Target application. It assumes that you have

2 Vector CANape® Support

set up, built, and downloaded your model (see “Setting Up and Building the
Model” on page 2-4).

1 In a DOS window, create a new folder to hold your project. This can be the
same folder as your xPC Target model files. For example, type

mkdir C:\MyProject

2 Start Vector CANape.
3 Select File > New project.

A new project wizard is displayed. Follow this dialog to create a new project.
4 After you create the new project, start it.

After the preliminary warning, the CANape window is displayed.

You can now configure the target computer and the loaded target application
as a Vector CANape device (see “Configuring the Model for Vector CANape”
on page 2-4).

Configuring the Vector CANape Device

This procedure describes how to configure the Vector CANape Device to work
with your target application. It assumes the following:

® You have created a new Vector CANape project to associate with a
particular target application. If you have not yet done so, see “Creating a
New Vector CANape Project” on page 2-5.

® You have set up, built, and downloaded your model. If you have not yet
done so, see “Setting Up and Building the Model” on page 2-4.

1 If you have not yet started your new Vector CANape project, start it now.
The Vector CANape window is displayed.
2 In the CANape window, click Device > Device configuration.

The device configuration window is displayed.

Configuring the Model for Vector CANape®

3 In the device configuration window, click New.

4 In Device Name, enter a name for the device to describe your target
application. For example, type

xPCTarget

Add the required comments.
5 Click Next.
6 From the driver-type menu list, select XCP.
7 Click Driver settings.
The XCP driver settings window is displayed.
8 In the Transport layer pane, from the Interface menu list, select TCP.
9 In the Transport layer pane, click Configuration.
10 In the Host field, enter the IP address of your target computer.

This is the target computer to which you have downloaded the target
application.

11 Set the port number to 5555.
12 Click OK.

13 If you have Vector CANape Version 5.6.32.3 and higher, and you want to
use the xPC Target software to acquire event driven data:

a In the Driver pane of the XCP driver settings window, click Extended
driver settings.

b Setthe ODT_ENTRY_ADDRESS_OPT_DISABLED parameter to Yes.
With this setting, events that are generated in the xPC Target

environment will be based on the model base sample time. For example,
a sample time of 0.001 seconds will appear as 100 milliseconds.

¢ Click OK.

2 Vector CANape® Support

2-8

14 In the XCP driver settings window, verify the connection to the target
computer by clicking Test connection. This command succeeds only if the
target computer is running and connected to exactly one host computer.

15 Click OK.
The Device dialog is displayed.

16 Click Next.

Do not exit the dialog.

You can now configure the location of the target application A2L (ASAP2) file
for the CANape database. See “Configuring the Location of the A2L (ASAP2)
File” on page 2-8.

If you want to load a new target application, you must close Vector CANape,
download a new target application through the MATLAB interface, then
restart Vector CANape.

Configuring the Location of the A2L (ASAP2) File

Use this procedure to configure the location of the target application A2L
(ASAP2) file for Vector CANape. This procedure assumes that you have
already configured the Vector CANape device and are still in the device
configuration dialog.

1 Clear Automatic detection of the database name.
2 At the Database name parameter, click Browse.
The Select database for device xPCTarget dialog is displayed.

3 Browse to the folder that contains the A2L (ASAP2) file for the target
application.

This might be the folder in which you built the target application, or
it might be the folder you specified during the target application build
configuration.

4 Select the A2L (ASAP2) file. Click Open.

Configuring the Model for Vector CANape®

A dialog requests confirmation of ASAP2 settings.
5 Click Yes.
6 Click Next.
7 Click Next.
8 Click Next.

9 Click OK.

10 You have completed the configuration of Vector CANape for the xPC Target
software environment.

You can now monitor and control your xPC Target system. The CANape
database should be populated with a comprehensive list of target application

signals and parameters that are available. See “Event Mode Data Acquisition”
on page 2-11.

During target application changes, you might need to manually reload the
A2L (ASAP2) that is generated by the xPC Target build process. You can do
this from the CANape Database editor.

Providing A2L (ASAP2) Files for Vector CANape

This topic assumes that:

® You have set up and built your model to generate data for Vector CANape.
If you have not yet done so, see “Setting Up and Building the Model” on
page 2-4.

® You have created a Vector CANape project folder and know the name of
that project folder.

To enable Vector CANape to load the A2L (ASAP2) file for the model xpcosc:

1 In a DOS window, change folder to the one that contains the A2L (ASAP2)
file from the previous procedure. For example:

cd D:\work\xpc

2-9

2 Vector CANape® Support

2 Look for and copy the A2L (ASAP2) file to your Vector CANape project
folder. For example:

copy xpcosc.a2l C:\MyProject

Vector CANape automatically loads the target application A2L (ASAP2) file
when it connects to the target computer.

2-10

Event Mode Data Acquisition

Event Mode Data Acquisition

In this section...

“Guidelines” on page 2-11

“Limitations” on page 2-11

Guidelines

To acquire event mode data rather than polling data, note the following
guidelines:

e Set the priority of the xcpserver block to the lowest possible. See suggested
priority values in “Setting Up and Building the Model” on page 2-4.

¢ The xPC Target software generates events at the base sample rate; this
execution rate is the fastest possible. If you are tracing a signal that is
updated at a slower rate than the base sample rate, you must decimate the
data to match the actual execution. (The xPC Target software generates
the event name with the ASAP2 generation during model code generation.)

® You can associate signals with the event generation through the Vector
CANape graphical user interface.

See the Vector CANape documentation for further details on associating
events with signals.

Limitations

The event mode data acquisition has the following limitations:

® Every piece of data that the xPC Target software adds to the event list
slows down the target application. The amount of data that you can observe
depends on the model sample time and the speed of the target computer. It
is possible to overload the target computer CPU to the point where data
integrity is reduced.

® You can only trace signals and scalar parameters. You cannot trace vector
parameters.

2-11

2 Vector CANape® Support

2-12

Incorporating Fortran
S-Functions

* “Fortran S-Functions” on page 3-2

® “Fortran Atmosphere Model” on page 3-4

3 Incorporating Fortran S-Functions

Fortran S-Functions

The xPC Target product supports Fortran in Simulink models using
S-functions. For more details, see “Create Level-2 Fortran S-Functions” and
“Port Legacy Code”.

In this section...

“Prerequisites” on page 3-2

“Simulink Demos Folder” on page 3-2

“Steps to Incorporate Fortran” on page 3-3

Prerequisites

You must have xPC Target Version 1.3 or later to use Fortran for xPC Target
applications. The xPC Target product supports the Fortran compiler(s) listed
here:

http://www.mathworks.com/support/compilers/current_release/

Simulink Demos Folder

The Simulink demos folder contains a tutorial and description on how to
incorporate Fortran code into a Simulink model using S-functions. To access
the tutorial and description,

1 In the MATLAB Command Window, type

demos

A list of MATLAB products appears on the left side of the MATLAB Online
Help window.

2 From the left side of the window, select Simulink > Demos > Modeling
Features.

A list of Simulink examples appears.

3 Click Custom Code and Hand Coded Blocks using the S-function
APIL

http://www.mathworks.com/support/compilers/current_release/

Fortran S-Functions

The associated Simulink examples page opens.
4 Click Open this model.
S-function examples are displayed.
5 Double-click the Fortran S-functions block.
Fortran S-functions and associated templates appear.

Steps to Incorporate Fortran

This topic lists the general steps to incorporate Fortran code into an xPC
Target application. Detailed commands follow in the accompanying examples.

1 Using the Fortran compiler, compile the Fortran code (subroutines (*.f)).
You will need to specify particular compiler options.

2 Write a Simulink C-MEX wrapper S-function. This wrapper S-function
calls one or more of the Fortran subroutines in the compiled Fortran object
code from step 1.

3 Use the mex function to compile this C-MEX S-function using a Visual
C/C++ compiler. Define several Fortran run-time libraries to be linked in.

This step creates the Simulink S-function MEX-file.

4 Run a simulation C-MEX file with the Simulink software to validate the
compiled Fortran code and wrapper S-function.

5 Copy relevant Fortran run-time libraries to the application build folder for
the xPC Target application build.

6 Define the Fortran libraries, and the Fortran object files from step 1, in the
Simulink Coder™ dialog box of the Simulink model. You must define these
libraries and files as additional components to be linked in when the xPC
Target application link stage takes place.

7 Initiate the xPC Target specific Simulink Coder build procedure for the
example model. Simulink Coder builds and downloads xPC Target onto
the target computer.

3 Incorporating Fortran S-Functions

Fortran Atmosphere Model

This example uses the example Atmosphere model that comes with the
Simulink product. The following procedures require you to know how to write
Fortran code according to Simulink and xPC Target software requirements.

Before you start, create an xPC Target Simulink model for the Atmosphere
model. See “Creating a Fortran Atmosphere Model” on page 3-4.

In this section...

“Creating a Fortran Atmosphere Model” on page 3-4

“Compiling Fortran Files” on page 3-7

“Creating a C-MEX Wrapper S-Function” on page 3-8

“Compiling and Linking the Wrapper S-Function” on page 3-12
“Validating the Fortran Code and Wrapper S-Function” on page 3-13
“Preparing the Model for the xPC Target Application Build” on page 3-14
“Building and Running the xPC Target Application” on page 3-16

Creating a Fortran Atmosphere Model

To create an xPC Target Atmosphere model in Fortran, you need to add an
xPC Target Scope block to the sfcndemo_atmos model. Perform this procedure
if you do not already have an xPC Target Atmosphere model for Fortran.

1 From the MATLAB window, change folder to the working folder, for
example, xpc_fortran_test.

Fortran Atmosphere Model

2 Type

sfcndemo_atmos

The sfcndemo_atmos model is displayed.
3 Add an xPC Target Scope block of type Target.
4 Connect this Scope block to the Tamb, K signal.

The model sfcndemo_atmos should look like the figure shown.

3 Incorporating Fortran S-Functions

3-6

'bi sfendemo_atmos EI@
File View Display Diagram Simulation Analysis Code Tools Help
]| = "2 Pii
* - B -2 4 b » (D) 7 @Y
sfcndemo_atmos
® | Pa[sfcndemo_atmos P hd
mosphere Model in Fortran
@ Atmosphere Model in Fort
C-MEX Calling Fortran Example
IE' [Simulaticn only - no code generation support in this dema)
— Altitede, km
»
Tamb, K o
[3.11,25] —— +, g | sfun_atmas Ca——— I
Constant > £
Density kgim3
T C-MEX, Gatewsy Scope
¥ S Function
Sine Wave to Forfran
remzqr: maﬂdrwhhnlhuﬂaimlirmimmﬁeﬂh:mmm_aﬂ?ti
}rhm: nmtldrmhhulhumhimlirthimimmhﬂn_ahm_nb'
» Copyright 1890-2011 The Mathi orks, Inc. —
Ready 100% odel

5 Double-click the target Scope block.

6 From the Scope mode parameter, choose Graphical rolling.

7 For the Number of samples parameter, enter 240.

8 Click Apply, then OK.

9 Double-click the Sine Wave block.

Fortran Atmosphere Model

10 For the Sample time parameter, enter 0.05.

11 Click OK.

12 From the File menu, click Save as. Browse to your current working folder,
for example, xpc_fortran_test. Enter a filename. For example, enter

fortran_atmos_xpc and then click Save.

Your next task is to compile Fortran code. See “Compiling Fortran Files”
on page 3-7.

Compiling Fortran Files

1 In the MATLAB Command Window, copy the file sfun_atmos_sub.F into
your Fortran working folder, for example, xpc_fortran_test. This is
sample Fortran code that implements a subroutine for the Atmosphere
model.

2 From Fortran _compiler dir\lib\ia32, copy the following files to the
working folder:

libifcore.lib
libifcoremd.lib
ifconsol.lib
libifportmd.lib
libifport.lib
libmmd.1lib
libm.1ib
libirc.1lib
libmmt.1lib
libifcoremt.lib

svml_disp.lib

3 From a DOS prompt, change folder to the working folder and create the

object file. For example:

3 Incorporating Fortran S-Functions

3-8

ifort /fpp /Qprec /c /nologo /MT /fixed /iface:cref -Ox sfun_atmos_sub.F

Your next task is to create a wrapper S-function. See “Creating a C-MEX
Wrapper S-Function” on page 3-8.

Creating a C-MEX Wrapper S-Function

This topic describes how to create a C-MEX wrapper S-function for the
Fortran code in sfun_atmos_sub.f. This function is a level 2 S-function. It
incorporates existing Fortran code into a Simulink S-function block and lets
you execute Fortran code from the Simulink software. Before you start:

¢ Compile your Fortran code. See “Compiling Fortran Files” on page 3-7.

¢ Become familiar with the guidelines and calling conventions for Simulink
Fortran level 2 S-functions (see “Create Level-2 Fortran S-Functions”).

¢ Implement the required callback functions using standard functions to
access the fields of the S-function’s simulation data structure,SimStruct
(see “Templates for C S-Functions”).

The following procedure outlines the steps to create a C-MEX wrapper
S-function to work with sfun_atmos_sub.f. It uses the template file
sfuntmpl_gate_fortran.c.

Note This topic describes how to create a level 2 Fortran S-function for the
fortran_atmos_xpc model. This file is also provided in sfun_atmos.c.

1 Copy the file sfuntmpl_gate fortran.c to your working folder.

This is your C-MEX file for calling into your Fortran subroutine. It works
with a simple Fortran subroutine.

2 With a text editor of your choice, open sfuntmpl_gate fortran.c.
3 Inspect the file. This is a self-documenting file.

This file contains placeholders for standard Fortran level 2 S-functions,
such as the S-function name specification and Simulink callback methods.

Fortran Atmosphere Model

4 In the #define S_FUNCTION_NAME definition, add the name of your
S-function. For example, edit the definition line to look like

#define S_FUNCTION_NAME sfun_atmos

5 In the file, read the commented documentation for fixed-step and
variable-step fixed algorithm support.

6 Delete or comment out the code for fixed-step and variable-step
fixed-algorithm support. You do not need these definitions for this example.

7 Find the line that begins extern void nameofsub_. Specify the function
prototype for the Fortran subroutine. For the sfun_atmos_sub.obj
executable, the Fortran subroutine is atmos_. Replace

extern void nameofsub_(float *sampleArgs, float *sampleOutput);
with
extern void atmos_(float *falt, float *fsigma, float *fdelta, float *ftheta);

Enter a #if defined/#endif statement like the following for Windows®
compilers.

#ifdef _WIN32
#define atmos_ atmos
#endif

8 Add a typedef to specify the parameters for the block. For example,

typedef enum {TO_IDX=0, PO_IDX, RO_IDX, NUM_SPARAMS } paramlIndices;

#define TO(S) (ssGetSFcnParam(S, TO_IDX))
#define PO(S) (ssGetSFcnParam(S, PO_IDX))
#define RO(S) (ssGetSFcnParam(S, RO_IDX))

9 Use the mdlInitializeSizes callback to specify the number of inputs,
outputs, states, parameters, and other characteristics of the S-function.
S-function callback methods use SimStruct functions to store and retrieve
information about an S-function. Be sure to specify the temperature,
pressure, and density parameters. For example,

static void mdlInitializeSizes(SimStruct *S)

3-9

3 Incorporating Fortran S-Functions

{
ssSetNumSFcnParams (S,NUM_SPARAMS) ; /* expected number */
#if defined (MATLAB_MEX_FILE)
if (ssGetNumSFcnParams(S) != ssGetSFcnParamsCount(S)) goto EXIT_POINT;
#endif
{

int iParam = 0;
int nParam = ssGetNumSFcnParams(S);

for (iParam = 0; iParam < nParam; iParam++)
{
ssSetSFcnParamTunable(S, iParam, SS_PRM_SIM_ONLY_TUNABLE);

ssSetNumContStates(S, 0);

ssSetNumDiscStates(S, 0);
ssSetNumInputPorts(S, 1);

ssSetInputPortWidth(S, 0, 3);
ssSetInputPortDirectFeedThrough(S, 0, 1);
ssSetInputPortRequiredContiguous(S, 0, 1);
ssSetNumOutputPorts(S, 3);
ssSetOutputPortWidth(S, 0, 3); /* temperature */
ssSetOutputPortWidth(S, 1, 3); /* pressure */
ssSetOutputPortWidth(S, 2, 3); /* density */

#if defined (MATLAB_MEX_FILE)
EXIT_POINT:
#endif

return;

10 Use the mdlInitializeSampleTimes callback to specify the sample rates
at which this S-function operates.

static void mdlInitializeSampleTimes(SimStruct *S)

{
ssSetSampleTime (S, 0, INHERITED_SAMPLE_TIME);

ssSetOffsetTime(S, 0, 0.0);

3-10

Fortran Atmosphere Model

ssSetModelReferenceSampleTimeDefaultInheritance(S);

11 Use the md10utputs callback to compute the signals that this block emits.

static void mdlOutputs(SimStruct *S, int T tid)

{

double *alt = (double *) ssGetInputPortSignal(S,0);
double *T = (double *) ssGetOutputPortRealSignal(S,0);
double *P = (double *) ssGetOutputPortRealSignal(S,1);
double *rho = (double *) ssGetOutputPortRealSignal(S,2);
int w = ssGetInputPortWidth(S,0);

int K;

float falt, fsigma, fdelta, ftheta;

for (k=0; k<w; k++) {

/* set the input value */
falt = (float) alt[k];

/* call the Fortran routine using pass-by-reference */
atmos_(&falt, &fsigma, &fdelta, &ftheta);

/* format the outputs using the reference parameters */

T[k] = mxGetScalar(T0(S)) * (double) ftheta;
Plk] = mxGetScalar(PO(S)) * (double) fdelta;
rho[k] = mxGetScalar(RO(S)) * (double) fsigma;

12 Use the md1Terminate callback to perform the actions required at
termination of the simulation. Even if you do not have require such
operations, you must include a stub for this callback.

static void mdlTerminate (SimStruct *S)

{
}

13 In the file, read the commented documentation for the following callbacks:

3-11

3 Incorporating Fortran S-Functions

3-12

e mdlInitalizeConditions — Initializes the state vectors of this
S-function.

e mdlStart — Initializes the state vectors of this S-function. This function
is called once at the start of the model execution.

* mdlUpdate — Updates the states of a block.

These are optional callbacks that you can define for later projects. You do
not need to specify these callbacks for this example.

14 Delete or comment out the code for these callbacks.

15 Save the file under another name. For example, save this file as

sfun_atmos.c. Do not overwrite the template file.

16 Copy the file sfun_atmos.c into your Fortran working folder, for example,

xpc_fortran_test.

Your next task is to compile and link the wrapper S-function. See “Compiling
and Linking the Wrapper S-Function” on page 3-12.

Compiling and Linking the Wrapper S-Function

This topic describes how to create (compile and link) a C-MEX S-function
from the sfun_atmos. c file. Before you start, copy the following files into the
working folder, xpc_fortran_test. (You should have copied these files when
you performed the steps in “Compiling Fortran Files” on page 3-7.)

libifcore.lib
libifcoremd.lib
ifconsol.lib
libifportmd.lib
libifport.1lib
libmmd.1lib
libm.1lib
libirc.1lib
libmmt.1lib

Fortran Atmosphere Model

® libifcoremt.lib
e svml_disp.1lib

Use the mex command with a C/C++ compiler such as Microsoft® Visual C++®
Version 6.0.

This topic assumes that you have created a C-MEX wrapper S-function. See
“Creating a C-MEX Wrapper S-Function” on page 3-8.

Invoking the mex command requires you to compile the wrapper C file
sfun_atmos.c. Be sure to link in the following:

® Compiled Fortran code: sfun_atmos_sub.obj

e Fortran run-time libraries to resolve external function references and

provide the Fortran run-time environment

When you are ready, mex the code. For example

mex -v LINKFLAGS="$LINKFLAGS /NODEFAULTLIB:libcmt.lib libifcoremd.lib
ifconsol.lib libifportmd.lib libmmd.lib libirc.lib svml_disp.lib" sfun_atmos.c
sfun_atmos_sub.obj

Note The command and all its parameters must be on one line.

This command compiles and links the sfun_atmos_sub.c file. It creates the
sfun_atmos.mex file in the same folder.

Your next task is to validate the Fortran code and wrapper S-function. See
“Validating the Fortran Code and Wrapper S-Function” on page 3-13.

Validating the Fortran Code and Wrapper S-Function

Validate the generated C-MEX S-function, sfun_atmos.mex. Bind the C-MEX
S-function to an S-function block found in the Simulink block library. You
can mask the S-function block like other S-function blocks to give it a specific
dialog box.

3-13

3 Incorporating Fortran S-Functions

3-14

This topic assumes that you have compiled and linked a wrapper S-function.
See “Compiling and Linking the Wrapper S-Function” on page 3-12.

The Atmosphere model example has a Simulink model associated with it.

1 In the MATLAB window, type

fortran_atmos_xpc

This opens the Simulink model associated with the Atmosphere model.
This model includes an S-function block bound to sfun_atmos.mex.

2 Select Simulation > Run to simulate the model.

3 Examine the behavior of the Atmosphere model by looking at the signals
traced by the Scope block.

Your next task is to prepare the model to build an xPC Target application.
See “Preparing the Model for the xPC Target Application Build” on page 3-14.

Preparing the Model for the xPC Target Application
Build

Before you build the Atmosphere model for xPC Target, define the following
build dependencies:

® The build procedure has access to sfun_atmos.sub.obj for the link stage.

® The build procedure has access to the Fortran run-time libraries (see
“Compiling and Linking the Wrapper S-Function” on page 3-12) for the
link stage.

This topic assumes that you have validated the Fortran code and wrapper

S-function (see “Validating the Fortran Code and Wrapper S-Function” on

page 3-13).

1 In the MATLAB window, type

fortran_atmos_xpc

This opens the Simulink model associated with the Atmosphere model.

Fortran Atmosphere Model

2 In the Simulink model, click Simulation > Model Configuration
Parameters.

The Configuration Parameters dialog box appears.
3 In the left pane, click the Code Generation node.
The Code Generation pane opens.

4 In the Target selection section, click the Browse button at the System
target file list.

5 Click xpctarget.tlc.

6 In the Make command field, replace make_rtw with one for the Fortran
compiler.

make_rtw S_FUNCTIONS_LIB="..\sfun_atmos_sub.obj ..\libifcoremt.lib ..\libmmt.lib
..\ifconsol.lib ..\libifport.lib ..\libirc.lib ..\svml_disp.lib"

Note The command and all its parameters must be on one line.

7 Click Apply.
8 Click OK.
9 From the File menu, click Save.

This command requires that the application build folder be the current folder
(one level below the working folder, xpc_fortran_test). Because of this, all
additional dependency designations must start with .. \.

Specify all Fortran object files if your model (S-Function blocks) depends
on more than one file. For this example, you specify the run-time libraries

only once.

Your next task is to build and run the xPC Target application. See “Building
and Running the xPC Target Application” on page 3-16.

3-15

3 Incorporating Fortran S-Functions

Building and Running the xPC Target Application

This topic assumes that you have prepared the model to build an xPC Target
application. See “Preparing the Model for the xPC Target Application Build”
on page 3-14.

Build and run the xPC Target application as usual. Be sure that you have
defined Microsoft Visual C++ as the xPC Target C compiler using.

After the build procedure succeeds, xPC Target automatically downloads the
application to the target computer. The Atmosphere model already contains
an xPC Target Scope block. This allows you to verify the behavior of the
model. You will be able to compare the signals displayed on the target
screen with the signals obtained earlier by the Simulink simulation run (see
“Validating the Fortran Code and Wrapper S-Function” on page 3-13).

3-16

Target Application
Environment

e “xPC Target Options Configuration Parameters” on page 4-3

o “xPC Target Explorer” on page 4-4

¢ “Command-Line C Compiler Configuration” on page 4-7

¢ “Command-Line Setup” on page 4-9

¢ “Command-Line Ethernet Communication Setup” on page 4-10
¢ “Command-Line PCI Bus Ethernet Setup” on page 4-11

e “PCI Bus Ethernet Hardware” on page 4-12

¢ “Command-Line PCI Bus Ethernet Settings” on page 4-13

¢ “Command-Line USB-to-Ethernet Setup” on page 4-16

e “USB-to-Ethernet Hardware” on page 4-17

¢ “Command-Line USB-to-Ethernet Settings” on page 4-19

¢ “Command-Line ISA Bus Ethernet Setup” on page 4-21

¢ “ISA Bus Ethernet Hardware” on page 4-22

¢ “Command-Line ISA Bus Ethernet Settings” on page 4-24

¢ “Ethernet Card Selection by Index” on page 4-27

¢ “Command-Line Ethernet Card Selection by Index” on page 4-29
¢ “Command-Line RS-232 Communication Setup” on page 4-32

e “RS-232 Hardware” on page 4-33

¢ “Command-Line RS-232 Settings” on page 4-34

4 Target Application Environment

“Command-Line Target Computer Settings” on page 4-36
“Command-Line Target Boot Methods” on page 4-39
“Command-Line Kernel Creation Prechecks” on page 4-40
“Command-Line Network Boot Method” on page 4-41
“Command-Line CD/DVD Boot Method” on page 4-43
“Command-Line DOS Loader Boot Method” on page 4-45
“Command-Line Removable Disk Boot Method” on page 4-47
“Command-Line Stand Alone Boot Method” on page 4-49
“Command-Line Stand Alone Settings” on page 4-50

xPC Target™ Options Configuration Parameters

xPC Target Options Configuration Parameters

The configuration parameters xPC Target Options node appears when you
select one of the xPC Target settings for the System target file parameter in
the Code Generation pane of the Configuration Parameters dialog box:

® xpctarget.tlc
Generate system target code for xPC Target.
® xpctargetert.tlc
Generate system target code for an xPC Target using the required

Embedded Coder® software.

The xPC Target Options node allows you to specify how the software
generates the target application. Before you create (build) a target application,
you might need to enter and select these options. The default values work
well for target application creation.

Tip If you set up your model to xPC Target Embedded Coder (xpctargetert.tlc),
you can create a custom Code Replacement Library (CRL). The CRL must be
based upon the xPC Target BLAS (XPC_BLAS). For more on CRLs, see:

e “Introduction to Code Replacement Libraries”

® Code Replacement Library (CRL) and Embedded Targets

For more information on the xPC Target Options node, see “Setting
Configuration Parameters”.

4 Target Application Environment

4-4

xPC Target Explorer

xPC Target Explorer is a graphical user interface for the xPC Target product.
It runs on your host computer and provides a single point of contact for most
interactions.

Note Do not use Simulink external mode while xPC Target Explorer is
running. Use only one interface or the other.

In this section...

“Basic Operations” on page 4-4

“Default Target Computers” on page 4-5

“Saving Environment Properties” on page 4-6

Basic Operations
Through xPC Target Explorer, you can perform basic operations, such as:

® Add and configure target computers for the xPC Target software, up to
64 target computers.

® Create boot CDs, removable drives, and network boot images for particular
target computers.

® Connect the target computers for your xPC Target system to the host
computers.

®* Download a prebuilt target application, or DLM, to a target computer.
e Start and stop the application that has been downloaded to the target.

® Add and remove host, target, or file scopes associated with the downloaded
target application.

e Monitor signals.
® Add or remove signals associated with xPC Target scopes.

e Start and stop scopes.

xPC Target™ Explorer

® Adjust parameter values for the signals while the target application is
running.

To start xPC Target Explorer, type xpcexplr in the MATLAB Command
Window.

There are four major panes in xPC Target Explorer:

® Targets pane — The top-left Targets pane lists the targets in your xPC
Target hierarchy. Under each target are nodes representing the properties
and (if accessible) the file system of the target.

® Applications pane — The bottom left Applications pane lists the target
applications running on the targets. Under each application are nodes
representing the properties, signal and parameter groupings, and (if
available) the model hierarchy of the application.

* Scopes pane — The top right Scopes pane lists the scopes defined on the
active target applications, whether predefined or dynamically created.

® (Center pane — The center pane displays under separate tabs information
associated with nodes selected in one of the other panes.

Default Target Computers

When you first start xPC Target Explorer, it opens a default node, TargetPC1.
You can configure this node for a target computer, then connect the node to
the target computer. If you later build a target application from a Simulink
model, the xPC Target software builds and downloads that application the
default target computer.

You can add other target computer nodes and designate one of them as the
default target computer instead of the first one. To set a target computer
node as the default, right-click that node and select Set As Default from the
context-sensitive menu. The default target computer node is boldface.

If you delete a default target computer node, the target computer node

preceding it becomes the default target computer node. The last target

computer node becomes the default target computer node and cannot be
deleted.

4-5

4 Target Application Environment

4-6

If you want to use the xPC Target command-line interface to work with the
target computer, you must indicate which target computer the command is
interacting with. If you do not identify a particular target computer, the xPC
Target software uses the default target computer.

The target computer environment object, xpctarget.targets, manages
collective and individual target computer environments. See “Command-Line
Setup” on page 4-9.

When you instantiate the target object constructor xpctarget.xpc without
arguments (for example, tg=xpc), the constructor uses the communication
properties of the default target computer to communicate with the target
computer. The target computer commands getxpcenv and setxpcenv get and
set environment properties for the default target computer only.

Saving Environment Properties

The xPC Target Explorer environment consists of the property settings you
define for the Targets pane. You can save your settings for the next session.

1 In the MATLAB Command Window, type xpcexplr.
2 Set properties in the Targets pane.

After you change a property, the Save icon and menu item are available.

3 Click the Save icon E in the toolbar.

If you do not explicitly save the environment settings, xPC Target Explorer
asks on exit if you want to save them.

Command-Line C Compiler Configuration

Command-Line C Compiler Configuration
To configure the host computer for the C compiler using MATLAB language:

1 Install a supported C compiler on the host computer.

For more about the xPC Target C compiler requirements, see
http://www.mathworks.com/support/compilers/current_release/

2 In the MATLAB Command Window, type:

xpcsetCC setup

The function queries the host computer for C compilers that the xPC Target
environment supports. It returns output like the following:

Select your compiler for xPC Target.

[1] Microsoft Visual C++ Compilers 2008 Professional Edition (SP1) in
c:\Program Files (x86)\Microsoft Visual Studio 9.0

[2] Microsoft Visual C++ Compilers 2010 Professional in
C:\Program Files (x86)\Microsoft Visual Studio 10.0

[0] None

Compiler:

Note The mex -setup command does not affect the C compiler setting
for the xPC Target software.

3 At the Compiler prompt, enter the number for the compiler that you want
to use. For example, 2.

The function verifies that you have selected the required compiler:

Verify your selection:

Compiler: Microsoft Visual C++ Compilers 2010 Professional
Location: C:\Program Files (x86)\Microsoft Visual Studio 10.0

4-7

http://www.mathworks.com/support/compilers/current_release/

4 Target Application Environment

Are these correct [y]/n?

4 Type y or press Enter to verify the selection.

4-8

Command-line Setup

Command-Line Setup

Use the following procedures to set up the software and hardware
configuration for single- and multiple-target systems.

You must have installed and configured a C compiler and verified the target
computer BIOS settings. If not, see:

¢ “Command-Line C Compiler Configuration” on page 4-7.

e “Target Computer BIOS Settings”

1 “Command-Line Ethernet Communication Setup” on page 4-10
2 “Command-Line RS-232 Communication Setup” on page 4-32
3 “Command-Line Target Computer Settings” on page 4-36

4 “Command-Line Target Boot Methods” on page 4-39

The next task is “Run Confidence Test on Configuration”.

4 Target Application Environment

L3 L3 [

Command-Line Ethernet Communication Setup
On the host computer, set the properties that your host and target computers
require for network communication with multiple target computers. For
serial communication, see “Command-Line RS-232 Communication Setup”

on page 4-32.

¢ “Command-Line PCI Bus Ethernet Setup” on page 4-11
¢ “Command-Line USB-to-Ethernet Setup” on page 4-16

The next task is “Command-Line Target Computer Settings” on page 4-36.

4-10

Command-Line PCl Bus Ethernet Setup

Command-Line PCl Bus Ethernet Setup

If your target computer has a PCI bus, use an Ethernet card for the PCI bus.
The PCI bus has a faster data transfer rate than the other bus types.

Follow these procedures:

1 “PCI Bus Ethernet Hardware” on page 4-12

2 “Command-Line PCI Bus Ethernet Settings” on page 4-13

The next task is “Command-Line Target Computer Settings” on page 4-36.

4-11

4 Target Application Environment

PCl Bus Ethernet Hardware
To install the PCI bus Ethernet card:

1 Acquire a supported PCI bus Ethernet card.

For the most current network communications requirements,
see http://www.mathworks.com/products/xpctarget/-
supported-hardware/xPC_Target_ Supported_Ethernet_Chipsets.pdf.

If you want to start the target computer from the network, the Ethernet
adapter must be compatible with the Preboot eXecution Environment
(PXE) specification.

2 Turn off your target computer.

3 If the target computer already has an unsupported Ethernet card, remove
the card.

4 Plug the supported Ethernet card into a free PCI bus slot.
5 Assign a static IP address to the target computer Ethernet card.

Although the target computer Ethernet card must have a static IP
address, the host computer network adapter card can have a Dynamic
Host Configuration Protocol (DHCP) address and can be accessed from the
network. When using the product with TCP/IP, you must configure the
DHCP server to reserve static IP addresses to prevent these addresses
from being assigned to other systems.

6 Connect your target computer Ethernet card to your LAN using an
unshielded twisted-pair (UTP) cable.

You can directly connect your computers using a crossover UTP cable with
RJ45 connectors. Both computers must have static IP addresses. If the
host computer has a second network adapter card, that card can have a
DHCP address.

The next task is “Command-Line PCI Bus Ethernet Settings” on page 4-13.

4-12

http://www.mathworks.com/products/xpctarget/supported-hardware/xPC_Target_Supported_Ethernet_Chipsets.pdf
http://www.mathworks.com/products/xpctarget/supported-hardware/xPC_Target_Supported_Ethernet_Chipsets.pdf

Command-Line PCI Bus Ethernet Settings

Command-Line PCl Bus Ethernet Settings

After you install the PCI bus Ethernet card, before you can build and
download a target application, you must specify the environment properties
for the host and target computers.

Before you start, ask your system administrator for the following information
for your target computer:

e P address
e Subnet mask address
® Port number (optional)

* Gateway (optional)
Use the following procedure for target TargetPC1:

1 At the MATLAB prompt, get the list of targets and make target TargetPC1
the default target:

tgs=xpctarget.targets;
tgs.makeDefault('TargetPC1');

2 Get the environment object for this target computer:

env=tgs.Item('TargetPC1');

All other settings will be made to this object.
3 Set the host-target communication type to 'TcpIp':

env.HostTargetComm='TcpIp';

4 Set the IP address for your target computer. For example:

env.TcpIpTargetAddress = '10.10.10.15";

5 Set the subnet mask address of your LAN. For example:

env.TcpIpSubNetMask = '255.255.255.0';

4-13

4 Target Application Environment

6 Set the TCP/IP port (optional) to a value higher than '20000' and less
than '65536'. For example:

env.TcpIpTargetPort = '22222"';

This property is set by default to '22222"', a value higher than the reserved
area (telnet, ftp, and so on).

7 Set the TCP/IP gateway (optional) to the gateway required to access the
target computer. For example:

env.TcpIpGateway = '255.255.255.255";

This property is set by default to '255.255.255.255", which means that
you do not use a gateway to connect to your target computer. If you
connect your computers with a crossover cable, leave this property as
'255.255.255.255"

If you communicate with the target computer from within your LAN, you
might not need to change this setting. If you communicate from a host
computer located in a LAN different from your target computer (especially
via the Internet), you must define a gateway and enter its IP address in
this box.

8 Set the bus type to 'PCI'.

env.TcpIpTargetBusType = 'PCI');

9 Set the target driver to one of '3C90x', 'I8254x', 'I82559"', 'NS83815",
'R8139', 'R8168"', 'Rhine', 'RTLANCE', or 'Auto’' (the default).

env.TcpIpTargetDriver = 'Auto’;

For target driver 'Auto’, the software determines the target computer
TCP/IP driver from the card installed on the target computer. If no
supported Ethernet card is installed in your target computer, the software
returns an error.

10 If the target computer has multiple Ethernet cards, follow the procedure in
“Command-Line Ethernet Card Selection by Index” on page 4-29.

11 Save the changes to your environment:

4-14

Command-Line PCI Bus Ethernet Settings

tgs.save

Repeat this procedure as required for each target computer.

The next task is “Command-Line Target Computer Settings” on page 4-36.

4-15

4 Target Application Environment

4-16

Command-Line USB-to-Ethernet Setup

If the target computer has a USB 2.0 port but no supported PCI or ISA
Ethernet card, use a USB-to-Ethernet adapter.

Follow these procedures:

1 “USB-to-Ethernet Hardware” on page 4-17

2 “Command-Line USB-to-Ethernet Settings” on page 4-19

The next task is “Command-Line Target Computer Settings” on page 4-36.

USB-to-Ethernet Hardware

USB-to-Ethernet Hardware
To install the USB-to-Ethernet adapter:

1 Acquire a supported USB-to-Ethernet adapter.

For the most current network communications requirements,
see http://www.mathworks.com/products/xpctarget/-
supported-hardware/xPC_Target_ Supported_Ethernet_Chipsets.pdf.

If you want to start the target computer from the network, the Ethernet
adapter must be compatible with the Preboot eXecution Environment
(PXE) specification.

2 Turn off your target computer.
3 Plug an Ethernet-to-USB adapter into the USB port on the target.

4 Connect the Ethernet-to-USB adapter to your LAN using an unshielded
twisted-pair (UTP) cable.

5 Assign a static IP address to the target computer USB-to-Ethernet adapter.

Although the target computer Ethernet adapter must have a static IP
address, the host computer network adapter can have a Dynamic Host
Configuration Protocol (DHCP) address and can be accessed from the
network. When using the product with TCP/IP, you must configure the
DHCP server to reserve static IP addresses to prevent these addresses
from being assigned to other systems.

6 Connect your target computer Ethernet adapter to your LAN using an
unshielded twisted-pair (UTP) cable.

You can directly connect your computers using a crossover UTP cable with
RJ45 connectors. Both computers must have static IP addresses. If the
host computer has a second network adapter, that adapter can have a
DHCP address.

Do not connect the host computer USB port to the target computer USB
port using a USB cable. A USB-to-Ethernet adapter plugged into the

4-17

http://www.mathworks.com/products/xpctarget/supported-hardware/xPC_Target_Supported_Ethernet_Chipsets.pdf
http://www.mathworks.com/products/xpctarget/supported-hardware/xPC_Target_Supported_Ethernet_Chipsets.pdf

4 Target Application Environment

target computer USB port behaves like an Ethernet card installed on the
target computer.

The next task is “Command-Line USB-to-Ethernet Settings” on page 4-19.

4-18

Command-Line USB-to-Ethernet Settings

Command-Line USB-to-Ethernet Settings

After you install the USB-to-Ethernet adapter, before you can build and

download a target application, you must specify the environment properties
for the host and target computers.

Before you start, ask your system administrator for the following information
for your target computer:

e P address
e Subnet mask address
® Port number (optional)

* Gateway (optional)
Use the following procedure for target TargetPC1:

1 At the MATLAB prompt, get the list of targets and make target TargetPC1
the default target:

tgs=xpctarget.targets;
tgs.makeDefault('TargetPC1');

2 Get the environment object for this target computer:

env=tgs.Item('TargetPC1');

All other settings will be made to this object.
3 Set the host-target communication type to 'TcpIp':

env.HostTargetComm='TcpIp';

4 Set the IP address for your target computer. For example:

env.TcpIpTargetAddress = '10.10.10.15";

5 Set the subnet mask address of your LAN. For example:

env.TcpIpSubNetMask = '255.255.255.0';

4-19

4 Target Application Environment

6 Set the TCP/IP port (optional) to a value higher than '20000' and less
than '65536'. For example:

env.TcpIpTargetPort = '22222"';

This property is set by default to '22222"', a value higher than the reserved
area (telnet, ftp, and so on).

7 Set the TCP/IP gateway (optional) to the gateway required to access the
target computer. For example:

env.TcpIpGateway = '255.255.255.255";

This property is set by default to '255.255.255.255"', which means that
you do not use a gateway to connect to your target computer. If you
connect your computers with a crossover cable, leave this property as
'255.255.255.255".

If you communicate with the target computer from within your LAN, you
might not need to change this setting. If you communicate from a host
computer located in a LAN different from your target computer (especially
via the Internet), you must define a gateway and enter its IP address in
this box.

8 Set the bus type to 'USB'.
env.TcpIpTargetBusType = 'USB';
9 Set the target driver to one of 'USBAX772', 'USBAX172', or 'Auto’.

env.TcpIpTargetDriver = 'Auto’;

If the target driver is 'Auto’, the software sets the driver to 'USBAX772",
the driver most commonly used.

10 Save the changes to your environment:

tgs.save
Repeat this procedure as required for each target computer.

The next task is “Command-Line Target Computer Settings” on page 4-36.

4-20

Command-Line ISA Bus Ethernet Setup

Command-Line ISA Bus Ethernet Setup

Your target computer might not have an available PCI bus slot or USB 2.0
port. In these cases, use an Ethernet card for an ISA bus.

Note Host-target communication using ISA bus Ethernet adapters will be
removed in a future release. Use PCI or USB bus adapters instead.

1 “ISA Bus Ethernet Hardware” on page 4-22

2 “Command-Line ISA Bus Ethernet Settings” on page 4-24

The next task is “Command-Line Target Computer Settings” on page 4-36.

4-21

4 Target Application Environment

4-22

ISA Bus Ethernet Hardware

To install an ISA bus Ethernet card, perform the following steps:

Note Host-target communication using ISA bus Ethernet adapters will be
removed in a future release. Use PCI or USB bus adapters instead.

1 Acquire a supported ISA bus Ethernet card.

For the most current network communications requirements,
see http://www.mathworks.com/products/xpctarget/-
supported-hardware/xPC_Target_ Supported_Ethernet_Chipsets.pdf.

If you want to start the target computer from the network, the Ethernet
adapter must be compatible with the Preboot eXecution Environment
(PXE) specification.

Turn off your target computer.

On your ISA bus card, assign an IRQ and I/O-port base address by moving
the jumpers or switches on the card. Write down these settings, because
you must enter them in xPC Target Explorer.

Set the IRQ line to 5 and the I/O-port base address to around 0x300. If one
of these hardware settings leads to a conflict in your target computer, select
another IRQ or I/0-port base address.

If your ISA bus card does not contain jumpers to set the IRQ line and the
base address, after installation use the utility on the installation disk
supplied with your card to manually assign the IRQ line and base address.

If you use an Ethernet card for an ISA bus within a target computer that
has a PCI bus, after installation you must reserve the chosen IRQ line
number for the Ethernet card in the PCI BIOS. To set up the PCI BIOS,
refer to your BIOS setup documentation.

Do not configure the card as a PnP-ISA device.

http://www.mathworks.com/products/xpctarget/supported-hardware/xPC_Target_Supported_Ethernet_Chipsets.pdf
http://www.mathworks.com/products/xpctarget/supported-hardware/xPC_Target_Supported_Ethernet_Chipsets.pdf

ISA Bus Ethernet Hardware

4 If the target computer already has an unsupported Ethernet card, remove
the card. Plug the compatible network card into a free ISA bus slot.

5 Assign a static IP address to the target computer Ethernet card.

Although the target computer Ethernet card must have a static IP
address, the host computer network adapter card can have a Dynamic
Host Configuration Protocol (DHCP) address and can be accessed from the
network. When using the product with TCP/IP, you must configure the
DHCP server to reserve static IP addresses to prevent these addresses
from being assigned to other systems.

6 Connect your target computer Ethernet card to your LAN using an
unshielded twisted-pair (UTP) cable.

You can directly connect your computers using a crossover UTP cable with
RdJ45 connectors. Both computers must have static IP addresses. If the
host computer has a second network adapter card, that card can have a
DHCP address.

The next task is “Command-Line ISA Bus Ethernet Settings” on page 4-24.

4-23

4 Target Application Environment

Command-Line ISA Bus Ethernet Settings

After you install the ISA bus Ethernet card, before you can build and

download a target application, you must specify the environment properties
for the host and target computers.

Before you start, ask your system administrator for the following information
for your target computer:

e P address
e Subnet mask address
® Port number (optional)

* Gateway (optional)
Use the following procedure for target TargetPC1:

1 At the MATLAB prompt, get the list of targets and make target TargetPC1
the default target:

tgs=xpctarget.targets;
tgs.makeDefault('TargetPC1');

2 Get the environment object for this target computer:

env=tgs.Item('TargetPC1');

All other settings will be made to this object.
3 Set the host-target communication type to 'TcpIp':

env.HostTargetComm='TcpIp';

4 Set the IP address for your target computer. For example:

env.TcpIpTargetAddress = '10.10.10.15";

5 Set the subnet mask address of your LAN. For example:

env.TcpIpSubNetMask = '255.255.255.0';

4-24

Command-Line ISA Bus Ethernet Settings

6 Set the TCP/IP port (optional) to a value higher than '20000' and less
than '65536'. For example:

env.TcpIpTargetPort = '22222"';

This property is set by default to '22222"', a value higher than the reserved
area (telnet, ftp, and so on).

7 Set the TCP/IP gateway (optional) to the gateway required to access the
target computer. For example:

env.TcpIpGateway = '255.255.255.255";

This property is set by default to '255.255.255.255"', which means that
you do not use a gateway to connect to your target computer. If you
connect your computers with a crossover cable, leave this property as
'255.255.255.255".

If you communicate with the target computer from within your LAN, you
might not need to change this setting. If you communicate from a host
computer located in a LAN different from your target computer (especially
via the Internet), you must define a gateway and enter its IP address in
this box.

8 Set the bus type to 'ISA'.
env.TcpIpTargetBusType = 'ISA';

9 Set the target driver to one of 'NE2000' or 'SMC91C9X'. For example:
env.TcpIpTargetDriver = 'NE2000';
Target driver 'Auto' is not supported for bus type 'ISA'.

10 Set the I/O-port base address and IRQ to values that correspond with the
jumper settings or ROM settings on your ISA bus Ethernet card. For
example:

env.TcpIpTargetISAMemPort = '0x300';
env.TcpIpTargetISAIRQ = '5';

11 Save the changes to your environment:

4-25

4 Target Application Environment

tgs.save;

Repeat this procedure as required for each target computer.

The next task is “Command-Line Target Computer Settings” on page 4-36.

4-26

Ethernet Card Selection by Index

Ethernet Card Selection by Index

If the target computer has multiple Ethernet cards, you must specify which
card to use for host-target communication. Use the following procedure to
discover the Ethernet index of the PCI cards on the target computer and
to specify which card to use.

Note For this procedure, you must be able to burn CDs on your host
computer and use Network boot mode for routine target operations.

Use the following procedure for target TargetPC1:
1 In the MATLAB window, type:
tgs=xpctarget.targets

tgs.makeDefault('TargetPC1')
env=tgs.Item('TargetPC1")

2 At the MATLAB prompt, type:

env.ShowHardware = 'on';

3 At the MATLAB prompt, type: xpcexplr.
4 In the Targets pane, expand the target computer node.
5 In the toolbar, click the Target Properties icon ﬁ

6 Select Host-to-Target communication and set Target driver to Auto.
If you set Target driver to a specific driver, such as INTEL_182559, the
kernel displays only information about boards that use that driver.

7 Select Target settings and clear the Graphics mode check box. This
setting causes the kernel to print text only.

8 Select Boot configuration and set Boot mode to CD.

9 Click Create boot disk and follow the prompts to create a new boot disk.

4-27

4 Target Application Environment

10 Insert the new boot disk and restart the target computer from the computer
boot switch.

After the start is complete, the target monitor displays information about
the Ethernet cards in the target computer, for example :

index: 0, driver: RTLANCE, Bus: 16, Slot: 7, Func: O
index: 1, driver: R8139, Bus: 16, Slot: 8, Func: 0
index: 2, driver: 182559, Bus: 16, Slot: 9, Func: O

You might need to change the boot order from the target computer BIOS to
allow starting from your disk. After the kernel starts with ShowHardware
‘on', the host computer cannot communicate with the target computer.

11 Note the index of the Ethernet card that you want to use for host-target
communication, for example, 2.

12 At the MATLAB prompt, type:

env.ShowHardware = 'off';
env.EthernetIndex = '#';

1s the index of the Ethernet card, for example, 2.
13 Select Target settings and select the Graphics mode check box.
14 Set Boot mode to Network.
15 Click Create boot disk.

16 Remove the boot disk from the target computer drive and start the target
computer from the computer boot switch.

The kernel selects the specified Ethernet card as the target computer card,
instead of the default card with index number 0.

Repeat this procedure as required for each target computer.

4-28

Command-Line Ethernet Card Selection by Index

Command-Line Ethernet Card Selection by Index

If you are using multiple target computers that have multiple Ethernet cards,
you must specify which card to use for host-target communication. Use the
following procedure to discover the Ethernet index of the PCI cards on a
specific target and specify which card to use.

Note For this procedure, you must be able to burn CDs on your host
computer and use network boot mode for routine target operations.

Use the following procedure for target TargetPC1:

1 In the MATLAB window, type
tgs=xpctarget.targets
tgs.makeDefault('TargetPC1')
env=tgs.Item('TargetPC1"')

2 At the MATLAB prompt, type:
env.ShowHardware = 'on';

3 Set the Ethernet driver to the default:

env.TcpIpTargetDriver = 'Auto';

If TcpIpTargetDriver is set to a specific driver, such as '182559', the
kernel displays only information about boards that use that driver.

4 Set the boot method to CD/DVD boot:

env.TargetBoot="'CDBoot"';

5 Set the target monitor to print text only:

env.TargetScope = 'Disabled’' ;

6 Save the changes to your environment:

tgs.save

4-29

4 Target Application Environment

4-30

7 Type xpcbootdisk.

The xPC Target software displays the following message and creates the
CD/DVD boot image.

Current boot mode: CDBoot
CD boot image is successfully created

Insert an empty CD/DVD. Available drives:
[1] d:\
[0] Cancel Burn

Insert the new boot disk and restart the target computer from the computer
boot switch.

After the start is complete, the target monitor displays information about
the Ethernet cards in the target computer, for example:

index: 0, driver: RTLANCE, Bus: 16, Slot: 7, Func: O
index: 1, driver: R8139, Bus: 16, Slot: 8, Func: 0
index: 2, driver: 182559, Bus: 16, Slot: 9, Func: O

You might need to change the boot order from the target computer BIOS to
allow starting from your disk. After the kernel starts with ShowHardware
'on', the host computer cannot communicate with the target computer.

Note the index of the Ethernet card you want to use for host-target
communication, for example, 2.

10 At the MATLAB prompt, type:

env.ShowHardware = 'off';
env.EthernetIndex = '#';

is the index of the Ethernet card, for example, 2.
Set the boot method back to network boot:

env.TargetBoot= 'NetworkBoot';

12 Set the target monitor to graphics mode:

Command-Line Ethernet Card Selection by Index

env.TargetScope = 'Enabled' ;
13 Save the changes to your environment:
tgs.save

14 Type xpcnetboot.
15 Start the target computer from the computer boot switch.

The kernel selects the specified Ethernet card as the target computer card,
instead of the default card with index number 0.

Repeat this procedure as required for each target computer.

4-31

4 Target Application Environment

Command-Line RS-232 Communication Setup

On the host computer, set the properties that your host and target computers
require for serial communication with a single target computer. For network
communication, see “Command-Line Ethernet Communication Setup” on
page 4-10.

Note RS-232 Host-Target communication mode will be removed in a future
release. Use Ethernet instead.

e “RS-232 Hardware” on page 4-33
e “Command-Line RS-232 Settings” on page 4-34

The next task is “Command-Line Target Computer Settings” on page 4-36.

4-32

RS-232 Hardware

RS-232 Hardware

Before you can use serial communication for host-target communication, you
must install the following RS-232 hardware:

1 Acquire a null modem cable:

DB9 Female DB9 Female

2 Connect the host and target computers with the null modem cable, using
either the COM1 or COM2 port.

Note which port is in use on the host computer. You need to set the host
computer port in the environment property settings.

The next task is “Command-Line RS-232 Settings” on page 4-34.

4-33

4 Target Application Environment

4-34

Command-Line RS-232 Settings

After you have installed the serial communication hardware, before you can
build and download a target application, specify the environment properties
for the host and target computers.

® Do not use host scopes and a scope viewer on the host computer to acquire
and display large blocks of data. The slowness of the RS-232 connection
causes large delays for large blocks of data.

® When you use serial communication, boot mode type 'NetworkBoot' is
not supported.

Use the following procedure for target TargetPC1:

1 At the MATLAB prompt, get the list of targets and make target TargetPC1
the default target:

tgs=xpctarget.targets;
tgs.makeDefault('TargetPC1');

2 Get the environment object for this target computer:

env=tgs.Item('TargetPC1');

All other settings will be made to this object.

3 At the MATLAB prompt, set the host-target communication type to
"RS232"':

env.HostTargetComm = 'RS232';

4 For host port, select one of 'COM1' or 'COM2'. For example:

env.RS232HostPort = 'COM1';

The default is 'COM1'. xPC Target selects the target computer port
automatically.

5 Select a baud rate as high as possible. For example:

env.RS232Baudrate = '115200';

Command-line RS-232 Settings

The default 1s 115200. A baud rate less than 38400 can cause
communication failures.

6 Save the changes to your environment:

tgs.save;

Repeat this procedure as required for each target computer.

The next task is “Command-Line Target Computer Settings” on page 4-36.

4-35

4 Target Application Environment

4-36

Command-Line Target Computer Settings

To run an xPC Target model on a target machine, you must configure the
target settings to match the capabilities of the target machine.

Use the following procedure for target TargetPC1:

1 At the MATLAB prompt, get the list of targets and make target TargetPC1
the default target:

tgs=xpctarget.targets;
tgs.makeDefault('TargetPC1');

2 Get the environment object for this target computer. All other settings
will be made to this object.

env=tgs.Item('TargetPC1');

3 Assign the following target computer settings as required:
¢ Target scope display.

- env.TargetScope = 'Enabled' (the default) — Use if you want to
display information, such as a target scope, in graphic format.

- env.TargetScope = 'Disabled' — Use if you want to display
information as text.

To use the full features of a target scope, install a keyboard on the target
computer.

e USB support.

- env.USBSupport = 'on' (the default) — Use if you want to use a USB
port on the target computer; for example, to connect a USB mouse.

- env.USBSupport = 'off' — Otherwise.
¢ Secondary IDE support.

- env.SecondaryIDE = 'on' — Use only if you want to use the disks
connected to a secondary IDE controller.

= env.SecondaryIDE = 'off' (the default) — Otherwise.

® Multicore support.

Command-Line Target Computer Settings

env.MulticoreSupport = 'on' — Use if your target computer has
multicore processors that you want to take advantage of.

env.MulticoreSupport = 'off' (the default) — Otherwise.
¢ Non-Pentium support.

env.NonPentiumSupport = 'on' — Use if your target computer has a
386 or 486 compatible processor.

env.NonPentiumSupport = 'off' (the default) — Otherwise.

If your target computer has a Pentium or higher compatible processor,
setting this value to 'on' slows the performance of your target computer.

e Target RAM size.

env.TargetRAMSizeMB = 'Auto' (the default) — Use if you want the
target application to read the target computer BIOS and determine the
amount of memory up to a maximum of 2 GB.

env.TargetRAMSizeMB = 'xxx' — Use if the target application cannot
read the BIOS. You must assign the amount of memory, in megabytes,
up to a maximum of 2 GB.

The Target RAM size parameter defines the total amount of installed
RAM in the target computer available for the kernel, target application,
data logging, and other functions that use the heap.

The xPC Target kernel can use only 2 GB of memory.
e Maximum model size.

env.MaxModelSize = '1MB' (the default) — Use in Stand Alone mode
if the target application requires at most this much memory on the
target computer.

env.MaxModelSize = '4MB' — Otherwise.

Memory not used by the target application is used by the kernel and
by the heap for data logging. Selecting too high a value leaves less
memory for data logging. Selecting too low a value does not reserve
enough memory for the target application and creates an error. You can
approximate the size of the target application by the size of the DLM
file produced by the build process.

4 Save the changes to your environment:

4-37

4 Target Application Environment

tgs.save;

Repeat this procedure as required for each target computer.

The next task is “Command-Line Target Boot Methods” on page 4-39.

4-38

Command-lLine Target Boot Methods

Command-Line Target Boot Methods

You can start your target computer with the xPC Target kernel using one of
several methods.

xPC Target Turnkey systems come with DOS Loader software preinstalled.
You can set up the DOS Loader boot method on your host or configure another
boot method. For more information, see your xPC Target Turnkey system
user documentation.

1 Before creating a boot kernel, perform “Command-Line Kernel Creation
Prechecks” on page 4-40.

2 Select one of the following methods:

“Command-Line Network Boot Method” on page 4-41
“Command-Line CD/DVD Boot Method” on page 4-43
“Command-Line DOS Loader Boot Method” on page 4-45
“Command-Line Removable Disk Boot Method” on page 4-47
“Command-Line Stand Alone Boot Method” on page 4-49.

3 If you select Stand Alone mode, restart the target computer and test your
application in Stand Alone mode. The confidence test is not intended for
standalone execution. You must create and execute your own confidence
test for standalone mode.

Otherwise, the next task is “Run Confidence Test on Configuration”.

4-39

4 Target Application Environment

4-40

Command-Line Kernel Creation Prechecks

Before creating the target boot kernel, configure your xPC Target system. At
a minimum, do the following:

1 Check the physical connections between the host computer and the target
computer. If you are using TCP/IP, these are Ethernet connections that
may pass through a LAN.

2 Check your target computer BIOS settings (see “Target Computer BIOS
Settings”).

3 Check that you have write permission for your current working folder.
4 In the MATLAB command window, type:
tgs=xpctarget.targets

tgs.makeDefault('TargetPC1')
env=tgs.Item('TargetPC1")

The contents of environment object env are printed in the command
window.

5 Check the host-to-target communication settings. As required, see:
¢ “Command-Line Ethernet Communication Setup” on page 4-10

¢ “Command-Line RS-232 Communication Setup” on page 4-32

6 Check that TargetBoot is set to the required value.

Repeat this procedure as required for each target computer.

Command-Line Network Boot Method

Command-Line Network Boot Method

After you have configured the target computer environment parameters, you
can use a dedicated Ethernet network to load and run the xPC Target kernel.
You do not need a boot CD or removable boot drive.

There are the following limitations:

® Do not use the network boot method on a corporate or nondedicated
network. Doing so might interfere with dynamic host configuration protocol
(DHCP) servers and cause problems with the network.

® Your Ethernet card must be compatible with the Preboot eXecution
Environment (PXE) specification.

e [f the target computer and host computer communicate by serial
communication (RS-232), you cannot start the target computer across the
network.

e [f Stand Alone mode is enabled, you cannot start the target computer
across the network.

Before you start, establish the required Ethernet connection between host
and target using the procedure in “Command-Line Ethernet Communication
Setup” on page 4-10.

Use the following procedure for target TargetPC1:
1 In the MATLAB command window, type:
tgs=xpctarget.targets

tgs.makeDefault('TargetPC1')
env=tgs.Item('TargetPC1")

The contents of environment object env are printed in the command
window. Some properties may already have the required values.

2 Set network boot method:

env.TargetBoot="'NetworkBoot'

4-41

4 Target Application Environment

4-42

3 Set a TCP/IP address. Verify that the subnet of this IP address is the same

as the host computer. Otherwise your network boot fails. For example,
type:

env.TcpIpTargetAddress='10.10.10.11"
Set the target computer MAC address (in hexadecimal). For example, type:

env.TargetMACAddress='01:23:45:67:89:ab'

Save the changes to your environment:

tgs=xpctarget.targets;
tgs.save

In the MATLAB Command Window, type:

xpcnetboot

The following message appears:

Current boot mode: NetworkBoot

The software creates and starts a network boot server process on the host
computer. You start the target computer using this process.

A minimized icon (ﬁ) representing the network boot server process
appears on the bottom right of the host computer system tray.

Repeat this procedure as required for each target computer.

The next task is “Run Confidence Test on Configuration”.

Command-Line CD/DVD Boot Method

Command-Line CD/DVD Boot Method

After you have configured the target computer environment parameters, you
can use a target boot CD or DVD to load and run the xPC Target kernel.
This topic describes using the MATLAB command line to create a boot CD or
DVD for a single target computer system. To use this capability, your host
computer must run under one of the following Windows systems:

® Microsoft Windows 7
® Microsoft Windows Vista™

® Microsoft Windows XP Service Pack 2 or 3 with Image Mastering API v2.0
(IMAPIv2.0), available at http://support.microsoft.com/kb/KB932716

Use the following procedure for target TargetPC1:

1 In the MATLAB window, type:
tgs=xpctarget.targets
tgs.makeDefault('TargetPC1')
env=tgs.Item('TargetPC1"')

2 Set the CD boot method:
env.TargetBoot="'CDBoot'

3 Save the changes to your environment:

tgs=xpctarget.targets;
tgs.save

4 In the MATLAB window, type xpcbootdisk.

The xPC Target software displays the following message and creates the
CD/DVD boot image.

Current boot mode: CDBoot
CD boot image is successfully created

Insert an empty CD/DVD. Available drives:
[1] d:\

4-43

http://support.microsoft.com/kb/KB932716

4 Target Application Environment

4-44

[0] Cancel Burn

5 Insert the empty CD or DVD in the host computer.

6 Type 1 and then press Enter.

7 When the write operation has finished, remove the CD or DVD from the
drive.

8 Insert the bootable CD/DVD into your target computer drive and restart
the target computer.

Repeat this procedure as required for each target computer.

The next task is “Run Confidence Test on Configuration”.

Command-Line DOS Loader Boot Method

Command-Line DOS Loader Boot Method

DOSLoader mode allows you to start the xPC Target kernel on a target
computer from a fixed or removable device with DOS boot capability, such
as a hard disk or flash memory. After starting the target computer, you can
download your application from the host computer over a serial or network
connection between the host and target computers.

Note To run in DOSLoader mode, the target computer boot device must
provide a minimal DOS environment complying with certain restrictions.
For details, see:

® “Create a DOS System Disk”
e “DOS Loader Mode Restrictions”

Use the following procedure for target TargetPC1:

1 For a specific target computer, retrieve the specific target computer
environment object:

tgs = xpctarget.targets;
env tgs.Item('TargetPC1');

2 Set the DOS Loader boot method:

env.TargetBoot = 'DOSLoader’;

3 Set DOSLoaderLocation to the folder where you want to create the
DOSLoader boot files. This location can be a local folder on the host
computer or a removable storage device that you use to start the target
computer. By default, the folder is the current working folder.

env.DOSLoaderLocation = 'D:\';

4 Save the changes to your environment:

tgs=xpctarget.targets;

4-45

4 Target Application Environment

4-46

tgs.save

5 In the MATLAB Command Window, type xpcbootdisk.
The xPC Target software displays the following message:

Current boot mode: DOSLoader
xPC Target DOS Loader files are successfully created

This operation creates the following boot files in the specified location:

autoexec.bat
xpcboot.com
*.rtb

6 If you create boot files on a local hard disk, copy these files to a floppy disk,
CD/DVD, or other removable storage media.

7 Transfer the boot files to your target computer or insert the removable
media containing the boot files into the target computer drive or USB port.

8 Verify that autoexec.bat file is on the DOS boot path (typically the root
folder).

9 Select the required boot device in the BIOS of the target computer.
10 Start the target computer.

When the target computer starts, it loads DOS, which executes the
autoexec.bat file. This file starts the xPC Target kernel (*.rtb). The target
computer then awaits commands from the host computer.

Repeat this procedure as required for each target computer.

The next task is “Run Confidence Test on Configuration”.

Command-Line Removable Disk Boot Method

Command-Line Removable Disk Boot Method

After you have configured the target computer environment parameters, you
can use a target boot floppy disk, removable drive, or USB flash drive to load
and run the xPC Target kernel. This topic describes using the MATLAB
command line to create a removable boot disk.

If you are creating a removable boot drive from a USB flash drive, you must
create a bootable partition on the drive before performing this procedure.
See “Create a Bootable Partition”.

Use the following procedure for target TargetPC1:

1 In the MATLAB command window, type:
tgs=xpctarget.targets

tgs.makeDefault('TargetPC1')
env=tgs.Item('TargetPC1")

2 In the output of the Item command, verify that property TargetBoot is
BootFloppy.

If required, update property TargetBoot, for instance by using the
command env.TargetBoot="'BootFloppy'.

3 Save the changes to your environment:

tgs=xpctarget.targets;
tgs.save

4 If you are creating a removable boot disk from a USB drive, insert the USB
drive in the host computer USB port and wait for it to be recognized.

5 In the MATLAB command window, type xpcbootdisk.

The xPC Target software creates the CD/DVD boot image and displays
the following message:

Current boot mode: BootFloppy
Insert a formatted floppy disk into your host PC's
disk drive and press a key to continue

4-47

4 Target Application Environment

4-48

6 If required, insert an empty removable disk in the host computer drive
and then press a key.

7 When the write operation has finished, remove the removable disk from
the drive or USB port.

8 Insert the removable boot disk into your target computer drive or USB
port and restart the target computer.

Repeat this procedure as required for each target computer.

The next task is “Run Confidence Test on Configuration”.

Command-Line Stand Alone Boot Method

Command-Line Stand Alone Boot Method
The xPC Target Embedded Option™ software extends the xPC Target base
product with Stand Alone mode. For more information on Stand Alone mode,

see “Stand Alone Mode Embedded Option”.

The target computer and its DOS environment must meet specific
requirements to run in Stand Alone mode:

e “Stand Alone Target Computer Prechecks”
e “Stand Alone Mode Restrictions”

To set up your target computer for Stand Alone mode:

1 “Command-Line Stand Alone Settings” on page 4-50
2 “Stand Alone Target Application Build”
3 “Stand Alone Target Application Transfer”

4 “Stand Alone Target Application Boot Configuration”

Continue by restarting the target computer and testing your application in
Stand Alone mode.

4-49

4 Target Application Environment

4-50

Command-Line Stand Alone Settings

Use the command line to set the kernel environment properties. When you
are done, you can create a Stand Alone kernel/target application.

For Stand Alone mode, you do not create an xPC Target boot disk or network
boot image. Instead, you copy files created from the build process to the target
computer hard drive.

Use the following procedure for target TargetPC1:
1 In the MATLAB command window, type:
tgs=xpctarget.targets

tgs.makeDefault('TargetPC1')
env=tgs.Item('TargetPC1")

The contents of environment object env are printed in the command
window.

2 Set network boot method:
env.TargetBoot="'StandAlone';

3 Save the changes to your environment:
tgs.save

Repeat this procedure as required for each target computer.

The next task is “Stand Alone Target Application Build”.

Signals and Parameters

Changing parameters in your target application while it is running in

real time, viewing the resulting signal data, and checking the results, are
important prototyping tasks. The xPC Target software includes command-line
and graphical user interfaces to complete these tasks. This documentation
includes the following topics:

“Signal Monitoring Basics” on page 5-4

“Monitor Signals Using xPC Target Explorer” on page 5-5

“Monitor Signals Using MATLAB Language” on page 5-8

“Configure Stateflow States as Test Points” on page 5-9

“Monitor Stateflow States Using xPC Target Explorer” on page 5-12
“Monitor Stateflow States Using MATLAB Language” on page 5-15
“Animate Stateflow Charts Using Simulink External Mode” on page 5-16
“Signal Tracing Basics” on page 5-18

“Configure Target Scope (xPC) Blocks” on page 5-19

“xPC Target Scope Usage” on page 5-25

“Target Scope Usage” on page 5-26

“Configure Host Scope (xPC) Blocks” on page 5-27

“Host Scope Usage” on page 5-30

“Create Target Scopes Using xPC Target Explorer” on page 5-31
“Configure Scope Sampling Using xPC Target Explorer” on page 5-37
“Trigger Scopes Interactively Using xPC Target Explorer” on page 5-40
“Trigger Scopes Noninteractively Using xPC Target Explorer” on page 5-44

5 Signals and Parameters

“Configure Target Scopes Using xPC Target Explorer” on page 5-50
“Create Signal Groups Using xPC Target Explorer” on page 5-54
“Create Host Scopes Using xPC Target Explorer” on page 5-58
“Configure the Host Scope Viewer” on page 5-65

“Configure Target Scopes Using MATLAB Language” on page 5-67
“Trace Signals Using Simulink External Mode” on page 5-70
“External Mode Usage” on page 5-74

“Trace Signals Using a Web Browser” on page 5-75

“Signal Logging Basics” on page 5-77

“Configure File Scope (xPC) Blocks” on page 5-78

“File Scope Usage” on page 5-83

“Create File Scopes Using xPC Target Explorer” on page 5-85
“Configure File Scopes Using xPC Target Explorer” on page 5-89

“Log Signal Data into Multiple Files” on page 5-93

“Configure Outport Logging Using xPC Target Explorer” on page 5-97
“Configure Outport Logging Using MATLAB Language” on page 5-101
“Configure File Scopes Using MATLAB Language” on page 5-106
“Log Signals Using a Web Browser” on page 5-110

“Parameter Tuning Basics” on page 5-112

“Tune Parameters Using xPC Target Explorer” on page 5-113

“Create Parameter Groups Using xPC Target Explorer” on page 5-118
“Tune Parameters Using MATLAB Language” on page 5-122

“Tune Parameters Using Simulink External Mode” on page 5-125
“Tune Parameters Using a Web Browser” on page 5-127

“Save and Reload Parameters Using MATLAB Language” on page 5-128
“Configure Model to Tune Inlined Parameters” on page 5-131

“Tune Inlined Parameters Using xPC Target Explorer” on page 5-134

e “Tune Inlined Parameters Using MATLAB Language” on page 5-139

* “Nonobservable Signals and Parameters” on page 5-140

5 Signals and Parameters

Signal Monitoring Basics

5-4

Signal monitoring acquires real-time signal data without time information
during target application execution. There is minimal additional load on the
real-time tasks. Use signal monitoring to acquire signal data without creating
scopes that run on the target computer.

In addition to signal monitoring, xPC Target enables you to monitor Stateflow
states as test points through the xPC Target Explorer and MATLAB
command-line interfaces. You designate data or a state in a Stateflow
diagram as a test point, making it observable during execution. You can work
with Stateflow states as you do with xPC Target signals, such as monitoring
or plotting Stateflow states.

When you monitor signals from referenced models, you must first set the test
point for the signal in the referenced model. The software ignores signal
labels in referenced models.

Note
e xPC Target Explorer works with multidimensional signals in column-major
format.

® Some signals are not observable. See “Nonobservable Signals and
Parameters” on page 5-140.

You can monitor signals using xPC Target Explorer and MATLAB language.
You can monitor Stateflow states using xPC Target Explorer, MATLAB
language, and Simulink External Mode.

Monitor Signals Using xPC Target™ Explorer

Monitor Signals Using xPC Target Explorer

This procedure uses the model xpcosc as an example. You must have already
completed the following setup:

1 Built and downloaded the target application to the target computer using
Simulink (lfl on the toolbar).

2 Run xPC Target Explorer (command xpcexplr).

3 Connected to the target computer in the Targets pane (Ey on the toolbar).

4 Set property Stop time to inf in the Applications pane (3':%3 on the
toolbar).

To monitor a signal:

1 In xPC Target Explorer, expand the Model Hierarchy node under the
target application node.

2 To view the signals in the target application, select the model node. On the
toolbar, click the View Signals icon #=. The Signals workspace opens.

3 To view the value of a signal, in the Signals workspace, select the Monitor
check box for the signal. For instance, select the check boxes for Signal
Generator and Integratorl. The signal values are shown in the
Monitoring Value column.

4 To start execution, click the target application. On the toolbar, click the
Start icon &

5 To stop execution, click the target application. On the toolbar, click the
Stop icon M.

The Application Parameters and Signals workspaces look like this figure.

5 Signals and Parameters

-\ xPC Target Explorer
File Edit WView Window
- M|
H>Aa W
iTargefs - n x| {68 TargetPClixpcosc |
LY > =
4 MATLAB Session
g o Mode: Real-Time Single Tasking
G Execution Time
Task Execution Time
Average Maximum Minumum
3.8237E-07 8.63E-06 2.69E-07
I | k | | |
» | Properties
Stop Time inf
Sample Time 0.00025
IA,pplications -0 :l(| -E xpcosc (TargetPC1) |
D = Q R |E| Manitar Signal Name Signal Label Monitoring Value Refresh Speed Ir
4 TargetPCl/xpcosc @& [F Gain 1 |
@Propertles El Gainl ___|
I Groupings =
4 Model Hierarchy] Gain2 J
=) = Integrator T
Integratorl 0.00000]
Signal Generator 0.00000 '_|
[Sum '_|
Ready

Monitor Signals Using xPC Target™ Explorer

To group signals, see “Create Signal Groups Using xPC Target Explorer”
on page 5-54.

When you are monitoring a signal group, you can change the output format
of the group by selecting one of the options in the Format column.

To make both workspaces visible at the same time, click and hold the tab
for one workspace and drag it down until the following icon appears in the

middle of the dialog box: . Continue to drag until the cursor reaches the
required quadrant, and then release the mouse button.

If a block name consists only of spaces, xPC Target Explorer does not
display a node for or signals from that block. To reference such a block,
provide an alphanumeric name for that block, rebuild and download the
model to the target computer, and reconnect the MATLAB session to the
target computer.

5-7

5 Signals and Parameters

Monitor Signals Using MATLAB Language

This procedure uses the model xpc_osc3 as an example. You must have
already completed the following setup:

1 Built and downloaded the target application to the target computer using
Simulink (l:l on the toolbar).

2 Assigned tg to the target computer.

1 To get a list of signals, type:

tg.ShowSignals='on'

ShowSignals = on

Signals = INDEX VALUE BLOCK NAME LABEL
0 0.000000 Signal Generator
1 0.000000 Transfer Fcn

If your signal has a unique label, its label is displayed in the Label column.
If the label is not unique, the command returns an error. If the signal label
1s in a referenced model, the software ignores it.

2 To get the value of a signal, use the getsignal method. In the MATLAB
Command Window, type:

tg.getsignal(0)

0 is the signal index. the MATLAB interface displays the value of signal 1.

ans=
3.731

See also “Configure Target Scopes Using MATLAB Language” on page 5-67.

Note The xPC Target software lists referenced model signals with their full
block path. For example, xpc_osc5/childmodel/gain.

Configure Stateflow® States as Test Points

Configure Stateflow States as Test Points

This procedure uses the model 01d_sf car as an example. It describes one
way to set Stateflow states as test points for monitoring.

1 In the MATLAB window, type old_sf _car.

2 In the Simulink window, click Simulation > Model Configuration
Parameters.

3 In the Configuration Parameters dialog box, click the Code Generation
node.

4 To build a basic target application, in the Target selection section of the
Code Generation pane, click Browse at the System target file list.
Click xpctarget.tlc, and then click OK.

5 Signals and Parameters

5 In the 01d_sf_car model, double-click the shift_logic chart.

3 Stateflow (chart) old_sf_car/shift_logic =
File Edit View Display Chart Simulation Analysis Code Tools Help
== EE [(ad B | = iid
b -8 = -2 4k ORGEY » (D | &~
shift_logic
© |[Paold_sf_car b [shift_logic -
@& R A R s R s TR S e e AR s e P SR R R S
s H P
' fourth
] first
1 . e
3 | entry; gear= 1; entry: gear = <;
| Wk Vil
! OV
1
= 1 v,
o (selection_state TR By
| during: CALC_TH; '
N {
| [speed < down_th] [speed = up_th]
| ! 5 b
1
1
"2 i
1)
1
]
H [speed < up_thl
4 i [speed > down_th]
H
i 5 5 -
i I aRerTWAT tick) after(TWAIT tick)
® H [speed <= down_th] [speed == up_th]
. ! {oear_state DOVWN} {gear_state UP}
[a=] 1
A =
»
Ready 112% ode5

6 In the shift_logic chart, click Tools > Model Explorer.
7 In the Model Explorer, expand old_sf_car, and then shift_logic.
8 Expand gear_state, and then select first.

9 In the State first pane Logging tab, select the Test point check box. This
selection creates a test point for the first state.

10 Click Apply.

5-10

Configure Stateflow® States as Test Points

11 Build and download the old_sf car target application to the target
computer.

12 View Stateflow states using one of:
® “Monitor Stateflow States Using xPC Target Explorer” on page 5-12
® “Monitor Stateflow States Using MATLAB Language” on page 5-15
¢ “Animate Stateflow Charts Using Simulink External Mode” on page 5-16

You can now view the states with xPC Target Explorer or the MATLAB
interface.

5-11

5 Signals and Parameters

Monitor Stateflow States Using xPC Target Explorer

You must have already and built and downloaded the application to carry
out this procedure.

This procedure uses the model 0ld_sf_car as an example. You must have
already completed the following setup:

1 Set Stateflow states as test points.

2 Built and downloaded the target application to the target computer using
Simulink (l.“_‘.l on the toolbar).

3 Run xPC Target Explorer (command xpcexplr).

4 Connected to the target computer in the Targets pane (Sg on the toolbar).

To monitor a test point:

1 In the Applications pane, expand the target application and the Model
Hierarchy node.

2 To view the test point, select shift_logic and click the View Signals
icon = on the toolbar.

The Signals workspace opens. The test point gear_state.first appears
like other signals in the Signals workspace.

3 In the Signals workspace, select the Monitor check box for
gear_state.first. The value of the signal is shown in the Monitoring

Value column.

The Signals workspace looks like this figure.

5-12

Monitor Stateflow® States Using xPC Target™ Explorer

4\ xPC Target Explorer
File Edit WView Window

A @
|Targets * o x | £ old st car/shift_logic (TargetPC1)
a
f-g au a! H Manitor Signal Name Signal Label Manitoring Value Refresh Speed Inde

4 MATLAB Session gear_state.first first 0.00000 J
4 TargetPCl &

B Properties

<3 File System

|Appﬁcations - 0 x
bEEEH
4 TargetPCl/old_sf_car #

-’.@ Properties
I Groupings

4 Model Hierarchy
« (5]

%] Engine
5] Threshald Calculat
-_‘al User Inputs
5 Vehicle

I %] transmission

& shift_logic

4 m | C
Ready

4 To start execution, click the target application. On the toolbar, click the
Start icon D

5-13

5 Signals and Parameters

5 To stop execution, click the target application. On the toolbar, click the
Stop icon M.

To group signals, see “Create Signal Groups Using xPC Target Explorer”
on page 5-54.

Tip When you are monitoring a signal group, you can change the output
format of the group by selecting one of the options in the Format column.

5-14

Monitor Stateflow® States Using MATLAB® Language

Monitor Stateflow States Using MATLAB Language

You must have already set Stateflow states as test points. If you have not, see
“Configure Stateflow States as Test Points” on page 5-9.

1 To get a list of signals in the MATLAB Command Window, type:

tg=xpc

2 To display the signals in the target application, type:

tg.ShowSignals="on'

The latter causes the MATLAB window to display a list of the target object
properties for the available signals.

For Stateflow states that you have set as test points, the state appears
in the BLOCK NAME column. For example, if you set a test point for the
first state of gear_state in the shift_logic chart of the old_sf_car
model, the state of interest is first. In the list of signals in the MATLAB
interface, this state appears as follows:

shift_logic:gear_state.first

shift_logic is the path to the Stateflow chart. gear_state.first is the
path to the specific state.

5-15

5 Signals and Parameters

Animate Stateflow Charts Using Simulink External Mode

The xPC Target software supports the animation of Stateflow charts in your
model to provide visual verification that your chart behaves as expected.

You must be familiar with the use of Stateflow animation. For more
information on Stateflow animation, see “Animate Stateflow Charts” in the
Stateflow documentation.

1 In the Simulink Editor window, select Simulation > Mode > External.
2 Select Code > External Mode Control Panel.
3 Select Signal & Triggering.

4 In the Trigger section of the External Signal & Triggering window:
* Set Mode to normal.
® In the Duration box, enter 5.

® Select the Arm when connecting to target check box.
5 Click Apply.
6 Select Simulation > Model Configuration Parameters.
7 Navigate to the xPC Target options node.
8 Select the Enable Stateflow animation check box.
9 Click Apply.

10 Build and download the model to the target computer.

11 On the toolbar, click the Connect To Target icon @w.

(el
12 To start the simulation, click the Run icon \t" on the toolbar.

The simulation begins to run. You can observe the animation by opening
the Stateflow Editor for your model.

5-16

Animate Stateflow® Charts Using Simulink® External Mode

13 To stop the simulation, click the Stop icon ™. on the toolbar.

Note Enabling the animation of Stateflow charts also displays additional
Stateflow information. The Stateflow software requires this information to
animate charts. You can disregard this information.

5-17

5 Signals and Parameters

Signal Tracing Basics

Signal tracing acquires signal and time data from a target application. You
can then visualize the data on the target computer or upload the data and
visualize it on the host computer while the target application is running.

You trace signals using target and host scopes and view them using xPC
Target Explorer, Simulink External Mode, MATLAB language, and a Web

browser interface.

xPC Target Explorer can display multidimensional signals in column-major
format.

Some signals are not observable. See “Nonobservable Signals and
Parameters” on page 5-140.

5-18

Configure Target Scope (xPC) Blocks

Configure Target Scope (xPC) Blocks

xPC Target includes a specialized Scope (xPC) block that you can configure to
display signal and time data on the target computer monitor. To do this, add
a Scope (xPC) block to the model, select Scope type Target, and configure
the other parameters as described in the following procedure.

Do not confuse xPC Target Scope blocks with standard Simulink Scope
blocks.

For more on using xPC Target Scope blocks, see “xPC Target Scope Usage”
on page 5-25.

For more on using target scopes, see “Target Scope Usage” on page 5-26.

This procedure uses the model my xpc_osc2 as an example. To access the
example folder, type:

addpath (fullfile(matlabroot, 'help', 'toolbox', 'xpc',
‘examples'));

In the MATLAB window, type my_xpc_osc2.
The Simulink block diagram opens for the model my_xpc_osc2.
Double-click the block labeled Scope (xPC).

The Block Parameters: Scope (xPC) dialog box opens. By default, the target
scope dialog box 1s displayed.

In the Scope number box, a unique number is displayed that identifies
the scope. This number is incremented each time you add a new xPC
Target Scope block.

This number identifies the xPC Target Scope block and the scope screen on
the host or target computers.

From the Scope type list, select Target if it is not already selected. The
updated dialog box is displayed.

Select the Start scope when application starts check box to start a
scope when the target application is downloaded and started. The scope
window opens automatically.

5-19

5 Signals and Parameters

In Stand Alone mode, this setting is mandatory because the host computer
1s not available to issue a command to start scopes.

6 From the Scope mode list, select Numerical, Graphical redraw,
Graphical sliding, or Graphical rolling.

If you have a scope type of Target and a scope mode of Numerical, the
scope block dialog box adds a Numerical format box. You can define the
display format for the data. If you choose not to complete the Numerical
format box, the xPC Target software displays the signal using the default
format of %15.6f, which is a floating-point format, without a label.

7 If you have selected scope mode Numerical, in the Numerical format box,
type a label and associated numeric format type in which to display signals.
By default, the entry format is floating-point without a label, %15.6f. The
Numerical format box takes entries of the format:

'[LabelN] [%width.precision][type] [LabelX]'

® |LabelN is the label for the signal. You can use a different label for each
signal or the same label for each signal. This argument is optional.

e width is the minimum number of characters to offset from the left of the
screen or label. This argument is optional.

® precision is the maximum number of decimal places for the signal
value. This argument is optional.

® type is the data type for the signal format. You can use one or more of
the following types.

Type Description

%e or %E Exponential format using e or E

%f Floating point

%0 Signed value printed in f or e format depending on

which is smaller

o°
@

Signed value printed in f or E format depending on
which is smaller

5-20

Configure Target Scope (xPC) Blocks

® |LabelX is a second label for the signal. You can use a different label for
each signal or the same label for each signal. This argument is optional.

Enclose the contents of the Numerical format text box in single quotation
marks.

For example:

'Foo %15.2f end'

For a whole integer signal value, enter 0 for the precision value. For
example:

'"Fool %15.0f end'

For a line with multiple entries, delimit each entry with a command and
enclose the entire string in single quotation marks. For example:

'Foo2 %15.6Ff end,Foo3 %15.6T end2'

You can have multiple Numerical format entries, separated by a comma.
If you enter one entry, that entry applies to each signal (scalar expansion).
If you enter fewer label entries than signals, the first entry applies to the
first signal, the second entry applies to the second signal, and so forth.
The last entry is scalar expanded for the remaining signals. If you have
two entries and one signal, the software ignores the second label entry and
applies the first entry. You can enter as many format entries as you have
signals for the scope. The format string has a maximum length of 100
characters, including spaces, for each signal.

8 Select the Grid check box to display grid lines on the scope. This parameter
is applicable only for target scopes with scope modes of type Graphical
redraw, Graphical sliding, or Graphical rolling

9 In the Y-Axis limits box, enter a row vector with two elements. The first
element is the lower limit of the y-axis and the second element is the
upper limit. If you enter 0 for both elements, scaling is set to auto. This
parameter is applicable only for target scopes with scope modes of type
Graphical redraw, Graphical sliding, or Graphical rolling.

10 In the Number of samples box, enter the number of values to be acquired
in a data package.

5-21

5 Signals and Parameters

e If you select a Scope mode of Graphical redraw, the display redraws
the graph every Number of samples.

e If you select a Scope mode of Numerical, the block updates the output
every Number of samples.

e If you select a Trigger mode other than FreeRun, this parameter can
specify the Number of samples to be acquired before the next trigger
event.

11 In the Number of pre/post samples box, enter the number of samples to
save or skip. To save N samples before a trigger event, specify the value N.
To skip N samples after a trigger event, specify the value N. The default is 0.

12 In the Decimation box, enter a value to indicate that data must be
collected at each sample time (1) or at less than every sample time (2 or
greater).

13 From the Trigger mode list, select FreeRun.

e If you select FreeRun or Software Triggering, you do not need to enter
additional parameters.

e [fyou select Signal Triggering, then enter the following additional
parameters, as required:

= In the Trigger signal box, enter the index of a signal previously
added to the scope.

This parameter does not apply if the Add signal port to connect a
signal trigger source check box is selected.

- (Alternatively) Click the Add signal port to connect a signal
trigger source check box, then connect an arbitrary trigger signal to
the port Trigger signal.

- In the Trigger level box, enter a value for the signal to cross before
triggering.

- From the Trigger slope list, select one of Either, Rising, or Falling.

¢ [f you select Scope Triggering, then enter the following additional
parameters, as required:

5-22

Configure Target Scope (xPC) Blocks

- In the Trigger scope number box, enter the scope number of a
Scope block. If you use this trigger mode, you must also add a second
Scope block to your Simulink model.

= If you want the scope to trigger on a specific sample of the other scope,
enter a value in the text box Sample to trigger on (-1 for end of
acquisition). The default value is 0, and indicates that the triggering
scope and the triggered (current) scope start simultaneously.

For more information on this field, see “Trigger One Scope with
Another Scope” on page 7-21.

The target scope dialog box looks like this figure.

5-23

5 Signals and Parameters

Sink Block Parameters: Scope (xPC) @
xpescopeblock (mask) (link)

¥PC Target Scope
Configure scope to acquire signal data.
Scope can be of type target, host, or file.

Parameters
Scope number:

Scope type: [Target v]

Start scope when application starts

Scope mode: [Graphical redraw V]
Grid
Y-axis limits:

[o,0]

Number of samples:

1000

Number of prefpost samples:

]
Decimation:
1
Trigger mode: [FreeRun =
[0K] [Cancel l [Help Apply
14 Click OK.

15 From the File menu, click Save As. The model is saved as my_xpc_osc2.

5-24

xPC Target™ Scope Usage

xPC Target Scope Usage

® To monitor an output signal from a Constant block by connecting it to an
xPC Target Scope block, you must add a test point for the Constant block
output signal.

® You can add an xPC Target scope only to the topmost model, not to a
referenced model. To log signals from referenced models, use xPC Target
Explorer scopes or xPC Target language scope objects.

® When the target application is built and downloaded, the xPC Target
kernel creates a scope representing the Scope block. To change xPC Target
Scope parameters after building the target application or while it is
running, assign the scope to a MATLAB variable using the target object
method xpctarget.xpc.getscope. If you use xpctarget.xpc.getscope to
remove a scope created during the build and download process, and then
restart the target application, the xPC Target kernel recreates the scope.

¢ If the output of a Mux block is connected to the input of an xPC Target
Scope block, the signal might not be observable. To observe the signal,
add a unity gain block (a Gain block with a gain of 1) between the Mux
block and the xPC Target Scope block. See “Nonobservable Signals and
Parameters” on page 5-140.

5-25

5 Signals and Parameters

Target Scope Usage

5-26

¢ xPC Target supports ten target scopes. Each target scope can contain up

to 10 signals.

For a target scope, logged data (sc.Data and sc.Time) is not accessible
over the command-line interface on the host computer. This is because
logged data is only accessible when the scope object status (sc.Status) is
set to Finished. When the scope completes one data cycle (time to collect
the number of samples), the scope engine automatically restarts the scope
instead of settingsc.Status to Finished.

If you create a scope object, for example, sc = getscopes(tg,1) for a
target scope, and then try to get the logged data by typing sc.Data, you
get an error message:

Scope # 1 is of type 'Target'! Property Data
is not accessible.

If you want the same data for the same signals on the host computer while
the data is displayed on the target computer, define a second scope object
with type host. Then synchronize the acquisitions of the two scope objects
by setting TriggerMode for the second scope to 'Scope'.

Configure Host Scope (xPC) Blocks

Configure Host Scope (xPC) Blocks

xPC Target includes a specialized Scope (xPC) block that you can configure to
display signal and time data on the host computer monitor. To do this, add a

Scope (xPC) block to the model, select Scope type to Host and configure the

other parameters as described in the following procedure.

® Do not confuse xPC Target Scope blocks with standard Simulink Scope
blocks.

® For more on using xPC Target Scope blocks, see “xPC Target Scope Usage”
on page 5-25.

® For more on host scopes, see “Host Scope Usage” on page 5-30.

¢ This procedure uses the model my_xpc_osc2 as an example. To access the
example folder, type:

addpath (fullfile(matlabroot, 'help', 'toolbox', 'xpc',
‘examples'));

1 In the MATLAB window, type my_ xpc_osc2.
The Simulink block diagram opens for the model my_xpc_osc2.
2 Double-click the block labeled Scope (xPC).

The Block Parameters: Scope (xPC) dialog box opens. By default, the target
scope dialog box 1s displayed.

3 In the Scope number box, a unique number is displayed that identifies
the scope. This number is incremented each time that you add a new xPC
Target scope.

This number identifies the xPC Target Scope block and the scope screen on
the host or target computers.

4 From the Scope type list, select Host. The updated dialog box is displayed.

5 Select the Start scope when application starts check box to start a
scope when the target application is downloaded and started. With a target
scope, the scope window opens automatically. With a host scope, you can
open a host scope viewer window from xPC Target Explorer.

5-27

5 Signals and Parameters

5-28

In Stand Alone mode, this setting is mandatory because the host computer
1s not available to issue a command to start scopes.

6 In the Number of samples box, enter the number of values to be acquired
in a data package.

7 In the Number of pre/post samples box, enter the number of samples to
save or skip. To save N samples before a trigger event, specify the value N.
To skip N samples after a trigger event, specify the value N. The default is 0.

8 In the Decimation box, enter a value to indicate that data must be
collected at each sample time (1) or at less than every sample time (2 or
greater).

9 From the Trigger mode list, select FreeRun.

¢ If you select FreeRun or Software Triggering, you do not need to enter
additional parameters.

¢ Ifyou select Signal Triggering, then enter the following additional
parameters, as required:

= In the Trigger signal box, enter the index of a signal previously
added to the scope.

This parameter does not apply if the Add signal port to connect a
signal trigger source check box is selected.

= (Alternatively) Click the Add signal port to connect a signal
trigger source check box, then connect an arbitrary trigger signal to
the port Trigger signal.

= In the Trigger level box, enter a value for the signal to cross before
triggering.

= From the Trigger slope list, select one of Either, Rising, or Falling.

e If you select Scope Triggering, then enter the following additional
parameters, as required:

= In the Trigger scope number box, enter the scope number of a
Scope block. If you use this trigger mode, you must also add a second
Scope block to your Simulink model.

= If you want the scope to trigger on a specific sample of the other scope,
enter a value in the text box Sample to trigger on (-1 for end of

Configure Host Scope (xPC) Blocks

acquisition). The default value is 0, and indicates that the triggering
scope and the triggered (current) scope start simultaneously.

For more information on this field, see “Trigger One Scope with

Another Scope” on page 7-21.

The host scope dialog box looks like this figure.

xpescopeblock (mask) (link)

¥PC Target Scope
Configure scope to acquire signal data.
Scope can be of type target, host, or file.

Parameters

Scope number:

Sink Block Parameters: Scope (xPC) @

Scope type: [Host

Start scope when application starts
Number of samples:

1000

Number of pre/post samples:

0

Decimation:

1

Trigger mode: [FreeRun

[DK H Cancel H Help Apply

10 Click OK.

11 From the File menu, click Save As. The model is saved as my_xpc_osc2.

5-29

5 Signals and Parameters

Host Scope Usage

¢ xPC Target supports as many host scopes as the target computer resources
can support. Each host scope can contain as many signals as the target
computer has resources to support them.

e Use host scopes to log signal data triggered by an event while your target
application is running. The host scope acquires the first N samples into a
buffer. You can retrieve this buffer into the scope object property sc.Data.
The scope then stops and waits for you to manually restart the scope.

The number of samples N to log after triggering an event is equal to the
value that you entered in the Number of samples parameter.

Select the type of trigger event in the Block Parameters: Scope (xPC)
dialog box by setting Trigger Mode to Signal Triggering, Software
Triggering, or Scope Triggering.

5-30

Create Target Scopes Using xPC Target™ Explorer

Create Target Scopes Using xPC Target Explorer

You can create a virtual target scope on the target computer using xPC Target
Explorer. These scopes have the full capabilities of the Scope (xPC) block in
Target mode, but do not persist past the current execution.

Note For information on using target scope blocks, see “Configure Target
Scope (xPC) Blocks” on page 5-19 and “Target Scope Usage” on page 5-26.

This procedure uses the model xpcosc as an example. You must have already
completed the following setup:

1 Built and downloaded the target application to the target computer using
Simulink (k22 on the toolbar).
2 Run xPC Target Explorer (command xpcexplr).

3 Connected to the target computer in the Targets pane (Eg on the toolbar).

4 Set property Stop time to inf in the Applications pane (3':%3 on the
toolbar).

To configure a virtual target scope:

1 In the Scopes pane, expand the xpcosc node.

2 To add a target scope, select Target Scopes and then click the Add Scope
icon B on the toolbar.

The new scope appears under node Target Scopes, for example Scope 1.
3 Select Scope 1 and then click the Properties iconﬁ on the toolbar.

4 In the Scope Properties workspace, click Signals. You add signals from
the Target Applications Signals workspace.

5-31

5 Signals and Parameters

5-32

5 In the Target Applications pane, expand the target application node
and then node Model Hierarchy.

6 Select the model node and then click the View Signals icon = on the
toolbar.

The Signals workspace opens, showing a table of signals with properties
and actions.

7 In the Signals workspace, to add signal Signal Generator to Scopel,
click the down arrow next to the Scopes icon B in its Actions column.

A list of scope types appears. Scope lappears under node Target Scopes.
8 Click the Add Signal(s) icon &3 next to Scopel under node Target Scopes.
9 Add signal Integratori to Scope 1 in the same way.

The dialog box looks like this figure.

Create Target Scopes Using xPC Target™ Explorer

File Edit View Window

)

i

|Targe15

B B

-1 x|__. '.‘Equ:nscﬂargeﬂ’c;lll

4 MATLAB Session
I & TargetPC1 &

Meanitar S_ignal Mame Signal Label Monitoring Value Refresh Speed
Gain i—
Gainl ——
Gain2 ——
Integrator —:'_
Integratorl —— el
Signal Generator —]—
] Sum —':|—‘

In

|Applications
PEEEH

4 TargetPCl/xpcosc &
QPmperties
I Graupings
- Mode!_Hierarchy

0%

A ‘/E TargetPCl/xpcosc/Scope 1 (Properties)
Scope Properties

Id: 1 Type: TARGET Status: INTERRUPTED

‘v Sampling

v Triggering

| v Display

(~) Signals (2 Items)

K Delete Signal(s)

Signal ID Signal Name
5 Signal Generator
4 Integratorl

Ready

(V)]
w
(VY]

5 Signals and Parameters

10 To start execution, click the target application and then click the Start
icon [on the toolbar.

The application starts running. No output appears on the target computer
monitor.

11 To start Scope 1, click Scope 1 in the Scopes pane and then click the
Start Scope icon [on the toolbar.

Output for signals Signal Generator and Integratori appears on the
target computer monitor.

The target computer screen looks like this figure.

Real-Time xPC Target Spy =N @

Hpocosc TET: B.6800008 at time 0.08167508

2@EAIME TET: B8.888011 at time 29.3452508

RT., single 3 ! execution started {(sample time: B.88B258>
1, s=et to state *Interrupted’

execution stopped at 24.714250

1, set to state " Interrupted’

TET: B.0080008 at time 0.B832250

t x U tet
Inf
@.88az25

3.542e-007 i TET: B.800011 at time 13.788758 ‘
execution started (sample time: B.888258)>

Integratorl
Eignal Generator

5-34

Create Target Scopes Using xPC Target™ Explorer

12

13

To stop Scope 1, click Scope 1 in the Scopes pane and then click the
Stop Scope icon [on the toolbar.

The signals shown on the target computer stop updating while the target
application continues running. The target computer monitor displays a
message like this message:

Scope: 1, set to state 'interrupted'

To stop execution, click the target application and then click the Stop
icon [on the toolbar.

The target application on the target computer stops running, and the target
computer displays messages like these messages:

minimal TET: 0.0000006 at time 0.001250
maximal TET: 0.0000013 at time 75.405500

You can create a virtual target scope from the scope types list by clicking
Add Scope next to scope type Target Scopes.

You can add or remove signals from a virtual target scope while the scope
is either stopped or running.

To group signals, see “Create Signal Groups Using xPC Target Explorer”
on page 5-54.

To configure the target computer display, see “Configure Target Scopes
Using xPC Target Explorer” on page 5-50.

To configure data sampling, see “Configure Scope Sampling Using xPC
Target Explorer” on page 5-37.

To configure scope triggering, see “Trigger Scopes Interactively Using xPC
Target Explorer” on page 5-40 and “Trigger Scopes Noninteractively Using
xPC Target Explorer” on page 5-44.

To make both workspaces visible at the same time, click and hold the tab
for one workspace and drag it down until the following icon appears in the

middle of the dialog box: . Continue to drag until the cursor reaches the
required quadrant, and then release the mouse button.

If a block is unnamed, xPC Target Explorer does not display signals or a
node for that block. To reference such a block, provide an alphanumeric

5-35

5 Signals and Parameters

name for that block, rebuild and download the model to the target
computer, and reconnect the MATLAB session to the target computer.

5-36

Configure Scope Sampling Using xPC Target™ Explorer

Configure Scope Sampling Using xPC Target Explorer

You can customize sampling for xPC Target scopes to facilitate data access to
the running model. You can configure sampling whether you added a Scope
(xPC) block to the model or added the scope at run time.

This procedure uses the model xpcosc as an example. You must have
already completed the procedure in “Create Target Scopes Using xPC Target
Explorer” on page 5-31. Target execution and scopes must be stopped.

1 Select Scope 1 and open the Properties pane (ﬁ on the Scopes toolbar).
2 In the Scope 1 properties pane, click Sampling.

3 In the Number of Samples box, enter the number of values to be acquired
in a data package, here 250.

If you select a Display mode of Graphical redraw, the display redraws
the graph every Number of Samples.

If you select a Display mode of Numerical, the block updates the output
every Number of Samples.

If you select a Trigger Mode other than FreeRun, this parameter can
specify the number of samples to be acquired before the next trigger event.
See “Trigger Scopes Interactively Using xPC Target Explorer” on page
5-40 and “Trigger Scopes Noninteractively Using xPC Target Explorer”
on page 5-44.

4 In the Decimation box, enter 10 to indicate that data must be collected at
every 10th sample time. The default is 1, to collect data at every sample
time.

5 In the Number of pre/post samples box, enter the number of samples to
save or skip. To save N samples before a trigger event, specify the value N.
To skip N samples after a trigger event, specify the value N. The default is 0.

The dialog box looks like this figure.

5-37

5 Signals and Parameters

5-38

A\ xPC Target Explorer
File Edit WView Window
. -]
H>>A B
[Targets ~ 0 x| F7 TargetPCl/xpcosc/Scope 1 (Properties)
F 5= Bm Scope Properties
g e Id: 1 Type: TARGET Status
I e -
* | Sampling
MNumber of Samples: 250
Decimation: 10
Mumber of Pre Post Samples: 0
| Applications ~ 0 x| | Iriggering
B @@ €[:
4 TargetPCl/xpcosc ® v | Display
%Properties _
I Groupings i
v)§ Is (2 It
4 Model Hierarchy Signals (2 Items)
=]
Ready

6 To see the effect of these settings, start execution ([on the Applications

toolbar).

7 Start Scope 1 (R on the toolbar).

INTERRUPTED

Configure Scope Sampling Using xPC Target™ Explorer

Output for signals Signal Generator and Integratori appears on the
target computer monitor.

Real-Time xPC Target Spy | Ele @

U— i TET: B.8@88811 at time 9.@8977308
2E44ME : 1, HumSanmples set to 258
RI, single i execution started (sample time: B.88B250)
t %y tet : execution stopped at §.184750
Inf 1, set to state " Interrupted’
n TET: ©@.0080000 at time O.026250
@. 8008235 i TET: ©.8@8811 at time B.375500
3.378e-087 : 1, decimation set to 1
stopped : 1, decimation set to 18

Signal Generator
Integratorl

8 Stop Scope 1 (i on the toolbar).

9 Stop execution (M on the Applications toolbar).

5-39

5 Signals and Parameters

Trigger Scopes Interactively Using xPC Target Explorer

You can customize scope triggering for xPC Target scopes to facilitate your
interaction with the running model. You can configure triggering whether
you created the scope by adding a Scope (xPC) block to the model or by adding
the scope at run time.

This procedure uses the model xpcosc as an example. You must have
already completed the procedure in “Create Target Scopes Using xPC Target
Explorer” on page 5-31. Target execution and scopes must be stopped.

1 Start execution (& on the Applications toolbar).
2 Select Scope 1 and open the Properties pane (ﬁ on the Scopes toolbar).
3 In the Scope 1 pane, click Triggering.
4 Select Trigger Mode Freerun.
By default, the Trigger Mode is set to Freerun. In this mode, the scope

triggers automatically as soon as it is started. It displays data until it is
stopped.

5 Start and stop Scope 1 (@ and H§ on the toolbar).

Signal data is displayed on the target computer monitor when the scope
starts and stops when the scope stops.

6 Select Trigger Mode Software.

In this mode, the scope triggers when you select Scope 1 and then click the
Trigger icon £ on the toolbar. Tt runs until you click it again.

7 Start Scope 1 (@ on the toolbar).
The Trigger icon £ is enabled on the toolbar.
8 Click the Trigger icon on the Scopes toolbar.

The current signal data is displayed on the target computer monitor when
you click the icon.

5-40

Trigger Scopes Interactively Using xPC Target™ Explorer

9 Stop Scope 1 (fif on the toolbar).
10 Select Trigger Mode Scope.
Settings Trigger scope and Trigger scope sample appear.

11 Set Trigger scope to 1. Press Enter.

The current signal data is displayed when you click the Trigger icon § on
the toolbar.

12 Leave Trigger scope sample set to 0.

Scope 1 triggers on the first sample after you click the Trigger icon.
13 Start Scope 1 (@ on the toolbar).

The Trigger icon £ is enabled on the toolbar.

14 Click the Trigger icon on the Scopes toolbar.

The current signal data is displayed on the target computer monitor when
you click the icon.

15 Stop Scope 1 ({f§ on the toolbar).

The dialog box looks like this figure.

5-41

5 Signals and Parameters

4\ xPC Target Explorer
File Edit Wiew Window
H A
|Targets > x | + xpcosc (TargetPC1)) I TargetPCl/xpcosc/Scope 1 (Properties)
ﬁ 5! 51} Scope Properties
4 PRL s Id: 1 T TARGET 5tat INTERRUPTED
| Ba TargetPCl & ' YES: T
v Sampling
» | Triggering
Trigger Maode: Scope -
i Trigger scope: 1
| Applications ~ 0 x!
D | w 5= |E| Trigger scope sample: 0
4 TargetPCl/xpcosc ®
::@Properties i
I Groupings ~/ Display
4 Model Hierarchy
=
—] ~ | Signals (2 Items)
Signal(s) added to Scope 1

The target monitor looks like this figure.

5-42

Trigger Scopes Interactively Using xPC Target™ Explorer

-

Real-Time xPC Target Spy

HKPCOSC
2844MB

RT. single
t x y tet
Inf
8.88825
3.387e—007
stopred

Signal Generator
Integratorl

gered sof tware
triggered sof tware
triggered sof tware
triggered sof tware
triggered sof tware

execution stopped at 16.282750

set to state ' Interrupted’
B.08080888 at time B.818250
maximal TET: 8.8060811 at time 9.038250

16 Stop execution (M on the Applications toolbar).

5-43

5 Signals and Parameters

Trigger Scopes Noninteractively Using xPC Target Explorer

You can customize scope triggering for xPC Target scopes to facilitate your
control of the running model. You can configure triggering whether you added
a Scope (xPC) block to the model or added the scope at run time.

This procedure uses the model xpcosc as an example. You must have
already completed the procedure in “Create Target Scopes Using xPC Target
Explorer” on page 5-31. Target execution and scopes must be stopped.

1 Start execution (b on the Applications toolbar).
2 Select Scope 1 and open the Properties pane (ﬁ on the Scopes toolbar).
3 In the Scope 1 pane, click Triggering.
4 Select Trigger Mode Signal.
Settings Trigger Signal, Trigger Slope, and Trigger Level appear.
5 Set Trigger Signal to Signal Generator.
6 Set Trigger Slope to Rising.

7 Leave Trigger Level as 0, indicating that the signal crosses 0 before
Scope 1 triggers.

5-44

Trigger Scopes Noninteractively Using xPC Target™ Explorer

A\ xPC Target Explorer
File Edit View Window

|Targets x| - xpcosc (TargetPC1) | (3 TargetPClixpcosc = BT TargetPCl/xpcosc/Scope
‘ﬁ QN Bs Scope Properties
4 MATLAE Session
: & = Id: 1 Type: TARGET Status: INTERRUPTED
+ | Sampling
» | Triggering
Trigger Mode: | Signal - |
Trigger Signal: ESI'gnaI Generator - |
Trigger Slope: I Rising -
!Applications -0 x| ; =
D | '4‘3‘ £ iHl Trigger Level: 0
4 TargetPCl/xpcosc ®
QProperties
I Groupings ¥/ Display
4 Model Hierarchy
il ~ | Signals (2 Items)

Signal(s) added to Scope 1

8 Start Scope 1 (R on the toolbar).

Signal data is displayed on the target computer monitor, with the rising
pulse of Signal Generator just beyond the left side.

5-45

5 Signals and Parameters

Real-Time xPC Target Spy

Umpp— ini TET: ©.000088 at time B.049500
2B4AME i TET: 8.000011 at time 6.158750@
s H 1., TriggerMode set to " Eignal”

RT. 1 - P
t zlzgte 1, TriggerSlope set to ‘Rising”
i £ i : execution started {(sample time:
n tem! execution stopped at 10.083588

@.80825 : 1, set to state ‘" Interrupted’
3.471e-007 ini TET: ©.000000 at time 0.025500
TET: 8.088811 at time 1.099800

Lignal Generator
Integratorl

9 Stop Scope 1 (H§ on the toolbar).
10 Add target scope Scope 2 (2 on the Scopes toolbar).
11 Open the Signals pane (4= on the Applications toolbar).
12 Add signal Integrator to Scope 2 in the Signals pane.
13 In the Scope 2 pane, click Triggering.
14 Select Trigger Mode Scope.
Settings Trigger scope and Trigger scope sample appear.

15 Set Trigger scope to 1. Press Enter. Scope 2 then triggers when Scope
1 triggers.

5-46

Trigger Scopes Noninteractively Using xPC Target™ Explorer

16 Leave Trigger scope sample set to 0. Scope 2 triggers on the same
sample as Scope 1.

5-47

5 Signals and Parameters

File

H A [

Edit

View Window

[Targets

BB

* 0 "J'f] > E TargetPCl/xpcosc/Scope 1 (Properties)

| 4 MATLAB Session
I & TargetPCl1 &

Scope Properties

lv | Sampling

) Tgerin

Trigger Mode: |Signa|

Trigger Signal: ISignaI Generator

Trigger Slope: | Rising

Trigger Level: 0

v Display

(v signals (2 ltems)

4 TargetPCl/xpcosc ®
5QIJrc:periiﬁ
I Groupings
4 Model Hierarchy
|

5-48

C -l’n TargetPCl/xpcosc/Scope 2 (Properties) m
Scope Properties

Id: 2 Type: TARGET Statuss INTERRUPTED
'V | Sampling
() Triggering
Trigger Mode: Scope -
Trigger scope: 1

0

Trigger scope sample:

(v Display

(v signals (1 ltems)

Signal(s) added to Scope 2

Trigger Scopes Noninteractively Using xPC Target™ Explorer

17 Start both Scope 1 and Scope 2 (Hf on the toolbar). You must explicitly
start and stop both scopes.

Scope 1 and Scope 2 display signal data on the target computer monitor.

Real-Time xPC Target Spy EI @

HPCOSo 2, signal 3 added
2@844ME : 2, set to state " Interrupted’
i H 1, set to state ‘Interrupted’
}:T; zl:gie ! execution started (sample time: B.808250)
Inf 4 ! execution stopped at 3.8782508
n 1, set to state *Interrupted’
@.86825 2, set to state " Interrupted’
3.898e-007 ini TET: B.000000 at time B.891750
stopped i TET: 8.800881 at time B.125008

18 Stop both Scope 1 and Scope 2 (f§ on the toolbar).

19 Stop execution (M on the Applications toolbar).

5-49

5 Signals and Parameters

Configure Target Scopes Using xPC Target Explorer

You can configure the target scope display to facilitate your view of the signal
data. You can configure the display whether you added a Scope (xPC) block to
the model or added the scope at run time.

This procedure uses the model xpcosc as an example. You must have
already completed the procedure in “Create Target Scopes Using xPC Target
Explorer” on page 5-31. Target execution and scopes must be stopped.

1 Start execution (& on the Applications toolbar).

2 Select Scope 1 and open the Properties pane (ﬁ on the Scopes toolbar).
3 In the Scope 1 pane, click Display.

4 Select Display mode Redraw and then click in the Y-Limits box.

This value is the default. It causes the scope display to redraw as soon as it
has acquired as many samples as specified in Number of Samples.

5 Start Scope 1 (@ on the toolbar).

Signal data is displayed on the target computer monitor, appearing to
move to the left.

6 Enter [0,10] in the Y-Limits box and then press Enter. The default
setting is [0,0], which automatically scales the output according to the
signal values.

The display changes to show only values at and above the zero line.

7 Clear the Grid (On/Off) check box. By default, the box is selected.

5-50

Configure Target Scopes Using xPC Target™ Explorer

File Edit View Window

Ho>a

|Té|i'géis R K] b E TargetPCl/xpcosc/Scope 1 (Properties)
& E! 55 ! Scope Properties
4 MALLAR Seion Id: 1 Type: TARGET Ststus INTERRUPTED
| B TargetPCl &
'} | Sampling
Number of Samples: 250
Decimation: 1
Number of Pre Post Samples: 0
|ﬂppﬁcaﬁons -~ x
+ [-
’_! & i | ~ | Display
) TargetPCl/xpcose | -
meperties Display mode: Redraw -
I Graupings
4 Model Hierarchy VoLimifs: [0, 107
8| xpcosc
Grid (On/Off):
(v Signals (2 Items)
Signal(s) added to Scope 1

The target computer monitor looks like this figure.

5-51

5 Signals and Parameters

Real-Time xPC Target Spy

HPCOSC H 1, set to state ' Interrupted’
2R44AMB ini TET: 9.00000E@ at time B.2868250
5 i TET: &.808811 at time 3.536750
ET; zlzgie H execut@on started {(sample time: @.008258)
Inf : execution stopped atr 41.8390806
1, set to state * Interrupted’

8. 8eez3 ini TET: ©.000000 at time 11.208925@
3.578e-887 i TET: ©.008011 at time 39.690750
i execution started (sample time: O.000258)

Signal Generator
Integratorl

8 Select Display mode Numerical and then click in the Y-Limits box.

The grid and axes disappear. The target computer monitor displays the
signals, color coded, in the default format of %15.6f (a floating-point format
without a label).

9 Select Display mode Rolling and then click in the Y-Limits box.

The display changes to a display that continuously moves a window along
the signal stream. New data enters the display from the right and then
moves toward the left.

10 Select Display mode S1iding and then click in the Y-Limits box. In this
mode, the scope refreshes continuously. New data overwrites the display
from the left toward the right.

5-52

Configure Target Scopes Using xPC Target™ Explorer

11 Stop Scope 1 ({§ on the toolbar).

12 Stop execution (M on the Applications toolbar).

5-53

5 Signals and Parameters

Create Signal Groups Using xPC Target Explorer

When testing a complex model with many signals, you frequently must select
signals for tracing or monitoring from multiple parts and levels of the model
hierarchy. You can make this task easier by using xPC Target Explorer to
create a signal group and save it to disk.

This procedure uses the model xpcosc as an example. You must have already
completed the following setup:

1 Built and downloaded the target application to the target computer using
Simulink (l:l on the toolbar).

2 Run xPC Target Explorer (command xpcexplr).

3 Connected to the target computer in the Targets pane (Epg on the toolbar).

To create a signal group:

1 In the Target Applications pane, expand the target application node
and right-click node Groupings.

2 Click New Signal Group.
The Add New Signal Group Item dialog box appears.

3 In the Add New Signal Group Item dialog box, enter a name in the Name
text box, for example signalgroupl.sig. In the Location text box, enter
a folder for the group file.

4 Click OK.
A new signal group appears, along with its Signal Group workspace.

5 In the Target Applications pane, expand the target application node and
then expand node Model Hierarchy.

6 Select the model node and then click the View Signals icon ® on the
toolbar.

5-54

Create Signal Groups Using xPC Target™ Explorer

The Signals workspace opens, showing a table of signals with properties
and actions.

7 In the Signal Groups workspace, to add signal Signal Generator to
signalgroupl.sig, click the down arrow next to the Signals Grouping

icon E in its Actions column.
A list of signal groups appears, including signalgroupl.sig.
8 Click the Add Signal(s) icon £3 next to signalgroupl.sig.

9 Add signal Integratori to signalgroupl.sig in the same way.

10 Click in the Signal Group workspace, and then click the Save icon E on
the toolbar.

When you are monitoring a signal group, you can change the output format
of the group by selecting one of the options in the Format column.

5-55

5 Signals and Parameters

‘(xp{'-f:falget Explarer
File Edit Wiew Window

X

|Targe1's ~ i x | . £ xpeosc (TargetPC1) |
4 SE o= Manitar Signal Name Signal Label Monitoring Value Refresh Speed Ini
4 MATLA Session B Gain]
| 5= TargetPCl &] Gainl]
] Gain2]
(] Integrator]
(] Integratorl]
] Signal Generator]
] Sum]
|Appl'|caﬁons ~ R K| ~ 4E signalgrouplsig®
D | @ € | < Delete Signals(s)
4 TargetPCl/xpcosc & Manitor Signal Name Signal Label Monitoring Value Refresh Speed |
Bproperties =l Signal Generator :| |
F oo &l Integratorl J |
“Esignalgroupl.sig
4 Model Hierarchy
%] xpcose

Ready

* To make both workspaces visible at the same time, click and hold the tab
for one workspace and drag it down until the following icon appears in the

5-56

Create Signal Groups Using xPC Target™ Explorer

middle of the dialog box: . Continue to drag until the cursor reaches the
required quadrant, and then release the mouse button.

For more on monitoring individual signals in the group, see “Monitor
Signals Using xPC Target Explorer” on page 5-5.

For more on tracing individual signals using a target scope, see “Create
Target Scopes Using xPC Target Explorer” on page 5-31.

For more on tracing individual signals using a host scope, see “Create Host
Scopes Using xPC Target Explorer” on page 5-58.

For more on logging individual signals using a file scope, see “Create File
Scopes Using xPC Target Explorer” on page 5-85.

5-57

5 Signals and Parameters

Create Host Scopes Using xPC Target Explorer

You can create a virtual host scope on the target computer using xPC Target
Explorer. These scopes have the full capabilities of the Scope (xPC) block in
Host mode, but do not persist past the current execution.

Note For information on using host scope blocks, see “Configure Host Scope
(xPC) Blocks” on page 5-27 and “Host Scope Usage” on page 5-30.

This procedure uses the model xpcosc as an example. You must have already
completed the following setup:

1 Built and downloaded the target application to the target computer using
Simulink (k22 on the toolbar).
2 Run xPC Target Explorer (command xpcexplr).

3 Connected to the target computer in the Targets pane (Eg on the toolbar).

4 Set property Stop time to inf in the Applications pane (3':%3 on the
toolbar).

To configure a virtual host scope:

1 In the Scopes pane, expand the xpcosc node.

2 To add a host scope, select Host Scopes and then click the Add Scope
icon B on the toolbar.

Under the Host Scopes node, the new scope is displayed, for example
Scope 1.

3 Expand Scope 1 and then click the Properties icon il on the toolbar.

4 In the Scope Properties pane, click Signals. Add signals from the
Target Applications Signals workspace.

5-58

Create Host Scopes Using xPC Target™ Explorer

5 In the Target Applications pane, expand the target application node
and then node Model Hierarchy.

6 Select the model node and then click the View Signals icon = on the
toolbar.

7 In the Signals workspace, to add signal Signal Generator to Scopel,
click the down arrow next to the Scopes icon @8 in its Actions column.

A list of scope types is displayed. Scope 1 appears under node Host
Scopes.

8 Click the Add Signal(s) icon &3 next to Scopel under node Host Scopes.

You can add or remove signals from a virtual host scope while the scope is
either stopped or running.

9 Add signal Integratori to Scope 1 in the same way.

5-59

5 Signals and Parameters

File

H A R

Edit View Window

|Taigeﬁ

B-al®

-0 xll/".‘Elqu:uscﬂargetPCl]

4 MATLAB Session
| 8a TargetPCl &

Menitar Signal Name Signal Label Monitoring Value Refresh Speed

Gain li—
Gainl ——
Gain2 ———
Integrator T
Integratorl — G
Signal Generator —'I:'_
Sum —

In

|Applications
bEE<E

-0 x|

4 TargetPCl/xpcosc &
Q?mperties
4 Groupings
4 Model Hierarchy

[0 xpcosc|

. /m TargetPCl/xpcosc/Scope 1 (Properties)]

Scope Properties

Id: 1 Type: HOST Status: INTERRUPTED

'VJ Sampling

(v Triggering

(~) Signals (2 Ttems)

¥ Delete Signal(s)

Signal ID Signal Mame
5 Signal Generator
4 Integratorl

Signaliz) added to Scope 1

5-60

Create Host Scopes Using xPC Target™ Explorer

10 To view the host scope, select Scope 1 and then click the View Scope
icon Bl on the toolbar.

The Host Scope Viewer window opens as a separate tab. The signals you
add to the scope appear at the top right of the viewer.

11 To start execution, click the target application and then click the Start
icon [® on the toolbar.

The application starts running. No output appears on the host scope viewer.

12 To start Scope 1, click Scope 1 in the Scopes pane and then click the
Start Scope icon Hf on the toolbar.

Output for signals Signal Generator and Integratori appears on the
host scope viewer.

5-61

5 Signals and Parameters

5-62

4\ xPC Target Explorer

File Edit View Window
=X

5 3 "]

Targets - 0 X

B

4 MATLAE Session
O= TargetPCl &

Applications

PEG-EH

4 TargetPCl/xpcosc &
-;#Properties
4 Groupings
4 Model Hierarchy

i
|

Signal(s) added to Scope 1

BB TargetPCl/xpcosc/Scope 1 (Host Scope Viewer) £ xpcosc (TargetPC1)

B[gle @ Dk [E] ME 4

17.0000

17.0100 1 17.0300 17.0400

™ TargetPCl/xpcosc/Scope 1 (Properties)
! rg p P P
Scope Properties

Id: 1 Type: HOST INTERRUPTED

Status:

~ | Sampling

+ | Triggering

~ | Signals (2 Items)

Delete Signal(s)

Signal ID

Signal Name

5 Signal Generator

4 Integratorl

Create Host Scopes Using xPC Target™ Explorer

13

14

To stop Scope 1, click Scope 1 in the Scopes pane and then click the
Stop Scope icon [on the toolbar.

The signals shown on the target computer stop updating while the target
application continues running. The target computer monitor displays a
message like this one:

Scope: 1, set to state 'interrupted'

To stop execution, click the target application and then click the Stop
icon [on the toolbar.

The target application on the target computer stops running, and the target
computer displays messages like this message:

minimal TET: 0.0000006 at time 0.001250
maximal TET: 0.0000013 at time 75.405500

To configure the host scope viewer, see “Configure the Host Scope Viewer”
on page 5-65

You can create a virtual host scope from the scope types list by clicking
Add Scope next to scope type Host Scopes.

To group signals, see “Create Signal Groups Using xPC Target Explorer”
on page 5-54.

To configure data sampling, see “Configure Scope Sampling Using xPC
Target Explorer” on page 5-37.

To configure interactive scope triggering, see “Trigger Scopes Interactively
Using xPC Target Explorer” on page 5-40.

To configure noninteractive scope triggering, see “Irigger Scopes
Noninteractively Using xPC Target Explorer” on page 5-44.

To make the active xPC Target Explorer workspaces visible at the same
time, click and hold the tab for one workspace and drag it down until the

following icon appears in the middle of the dialog box: . Continue to
drag until the cursor reaches the required quadrant, and then release the
mouse button. Repeat for the other workspaces.

If a block is unnamed, xPC Target Explorer does not display signals or a
node for that block. To reference such a block, provide an alphanumeric

5-63

5 Signals and Parameters

name for that block, rebuild and download the model to the target
computer, and then reconnect the MATLAB session to the target computer.

5-64

Contfigure the Host Scope Viewer

Configure the Host Scope Viewer

You can customize the viewer for each host scope to facilitate your interaction
with the running model.

This procedure uses the model xpcosc as an example. You must have already
completed the procedure in “Create Host Scopes Using xPC Target Explorer”
on page 5-58. Target execution and scopes must be stopped.

1 Start execution (& on the Applications toolbar).
2 To start Scope 1, click the Start icon i on the Host Scope Viewer toolbar.

3 To trigger Scope 1, click the Trigger icon § on the Host Scope Viewer
toolbar.

To interactively trigger a capture using the Trigger icon § , you must
set the scope Trigger Mode to Software or Scope. See “Trigger Scopes
Interactively Using xPC Target Explorer” on page 5-40.

4 In the xPC Target Host Scope Viewer, right-click anywhere in the axis area
of the viewer and then click Edit.

The Host Scope Viewer display parameter icons become enabled on the
toolbar.

5 Adjust the Host Scope Viewer display using:

® Auto Scale |E| — To scale the display to accommodate the top and
bottom of the Y-axis.

® Axes Scroll {,r' — To move the content up and down and right and left
relative to the axes. The axes scroll as required.

e Axes Zoom *“® — To stretch and compress the X-axis and Y-axis.
e Zoom In U.'.{ — To zoom in on the current center of the display.

e Zoom Out [C{ — To zoom out from the current center of the display.

release the mouse button, the display zooms in upon the selected area.

5-65

5 Signals and Parameters

5-66

® Data Cursor m_ — To display data values using a set of cross-hairs in
the display.

Data is displayed as the pair x-value,y-value, indicating the value at
that point on the display. You can drag the center of the cross hairs and
observe the value at each point.

¢ Legends [=Z] — To toggle display of the signal names.
6 To stop Scope 1, click the Stop icon [l on the Host Scope Viewer toolbar.

7 Stop execution (M on the Applications toolbar).

Configure Target Scopes Using MATLAB® Language

Configure Target Scopes Using MATLAB Language

Creating a scope object allows you to select and view signals using xPC Target
functions instead of the xPC Target graphical user interface.

This procedure uses the Simulink model xpcosc as an example. To do this
procedure, you must have already built the target application forxpcosc and
assigned tg to the target computer. It describes how to trace signals with

target scopes.

1 Start running your target application. Type:

tg.start

The target computer displays the following message:

System: execution started (sample time: 0.0000250)

2 To get a list of signals, type:

tg.ShowSignals='on'

The MATLAB window displays a list of the target object properties for the
available signals. For example, the signals for the model xpcosc are:

ShowSignals = on

Signals = INDEX VALUE

0

1 0
2 0
3 0
4 0
5 0
6 0

0.
.000000
.000000
.000000
.000000
.000000
.000000

000000

BLOCK NAME LABEL
Integratori

Signal Generator

Gain

Integrator

Gain1

Gain2

Sum

For more information, see “Monitor Signals Using MATLAB Language”

on page 5-8.

3 Create a scope to be displayed on the target computer. For example, to
create a scope with an identifier of 1 and a scope object name of sc1, type:

sc1=tg.addscope('target', 1)

5-67

5 Signals and Parameters

4 List the properties of the scope object. For example, to list the properties of
the scope object sc1, type:

sci

The MATLAB window displays a list of the scope object properties. The
scope properties Time and Data are not accessible with a target scope.

XPC Scope Object

Application = Xpcosc

Scopeld =1

Status = Interrupted

Type = Target

NumSamples = 250
NumPrePostSamples =0

Decimation =1

TriggerMode = FreeRun
TriggerSignal = -1

TriggerLevel = 0.000000
TriggerSlope = Either
TriggerScope =1

TriggerSample = -1

Mode = Redraw (Graphical)
YLimit = Auto

Grid = 0n

Signals = no Signals defined

5 Add signals to the scope object. For example, to add Integratori and
Signal Generator, type

sc1.addsignal ([0,1])

The target computer displays the following messages:

Scope: 1, signal 0 added
Scope: 1, signal 1 added

After you add signals to a scope object, the signals are not shown on the
target screen until you start the scope.

6 Start the scope. For example, to start the scope sc1, type:

5-68

Configure Target Scopes Using MATLAB® Language

sci.start

The target screen plots the signals after collecting each data package.
During this time, you can observe the behavior of the signals while the
scope 1s running.

Stop the scope. Type:

sc1.stop

The signals shown on the target computer stop updating while the target
application continues running. The target computer displays the following
message:

Scope: 1, set to state 'interrupted'
Stop the target application. In the MATLAB window, type:
tg.stop

The target application on the target computer stops running. The target
computer displays the following messages.:

minimal TET: 0.000023 at time 1313.789000
maximal TET: 0.000034 at time 407.956000

5-69

5 Signals and Parameters

Trace Signals Using Simulink External Mode

You can use Simulink external mode to establish a communication channel
between your Simulink block diagram and your target application. The
block diagram becomes a graphical user interface to your target application.
Simulink scopes can display signal data from the target application, including
from models referenced inside a top model. You can control which signals to
upload through the External Signal & Triggering dialog box (see “Signal
Selection” and “Control External Mode Operations”).

Note Do not use Simulink external mode while xPC Target Explorer is
running. Use only one interface or the other.

This procedure uses the model xpcosc as an example. xpcosc contains a
Simulink Scope block.

1 In the MATLAB window, type xpcosc.

2 In the Simulink window, from the Code menu, select External Mode
Control Panel.

3 In the External Mode Control Panel dialog box, click the Signal &
Triggering button.

4 In the External Signal & Triggering dialog box, set the Source parameter
to manual.

5 Set the Mode parameter to normal. In this mode, the scope acquires data
continuously.

6 Select the Arm when connecting to target check box.
7 In the Delay box, enter 0.

8 In the Duration box, enter the number of samples for which external mode
is to log data, for example 1000.

The External Signal & Triggering dialog box looks like this figure.

5-70

Trace Signals Using Simulink® External Mode

xpcosc: External Signal & Triggering [
Signal selection

Trigger | Selected | Block i Path] Select all

X Scope ¥pcosg/Scope Clear all

@ on

off

Trigger Sign
Go To Bloc

Trigger options

Source: | manual '] Mode: [normal w | Duration: 1000 Delay: 0

[¥] Arm when connecting to target

Trigger signal
Path: Port: |1 Element: |any

Direction: |rising = | Lewvel: |0 Hold-off: |0

[0K]| Cancel || Help Appl

9 Click Apply, and then Close.
10 In the External Mode Control Panel dialog box, click OK.

11 In the Simulink toolbar, increase the simulation stop time to, for example,
50.

12 From the File menu, select Save As and enter a file name. For example,
enter my_xpc_osc6, and then click OK.

13 To build and download the target application, click the Build icon [l on
the Simulink toolbar.

The xPC Target software downloads the target application to the default
target computer.

5-71

5 Signals and Parameters

5-72

14 In the Simulink window, click Simulation > Mode > External. A check
mark appears next to the menu item External, indicating that Simulink
external mode is activated.

15 If a Scope window is not displayed for the Scope block, double-click the
Scope block.

16 In the Scope window, click the Connect To Target icon Gi@ on the toolbar.

The current Simulink model parameters are downloaded from the host
computer to the target application.

i

[
17 To start the simulation, click the Run icon 2 on the toolbar.

The target application begins running on the target computer. The Scope
window displays plotted data.

.
uScupe (o=]| =]

Be Qi DNRKREER B

Trace Signals Using Simulink® External Mode

18 To stop the simulation, click the Stop icon "™/ on the toolbar.

5-73

5 Signals and Parameters

External Mode Usage

* When setting up signal triggering (Source set to signal), you must explicitly
specify the element number of the signal in the Trigger signal:Element
box. If the signal is a scalar, enter a value of 1. If the signal is a wide
signal, enter a value from 1 to 10. When uploading xPC Target signals to
Simulink scopes, do not enter Last or Any in this box.

¢ The Direction:Holdoff value does not affect the xPC Target signal
uploading feature.

® Attempting to upload information from buses and virtual signals inside a
reference model generates a warning.

5-74

Trace Signals Using a Web Browser

Trace Signals Using a Web Browser

The Web browser interface allows you to visualize data using a graphical
user interface.

After you connect a Web browser to the target computer, you can use the
scopes page to add, remove, and control scopes on the target computer:

1 In the left frame, click the Scopes button. The browser loads the Scopes
List pane into the right frame.

2 Click the Add Scope button.

A target scope is created and displayed on the target computer. The
Scopes pane displays a list of the scopes present. You can add a new scope,
remove existing scopes, and configure the scopes from this page.

To create a host scope, use the drop-down list next to the Add Scope
button to select Host. This item is set to Target by default.

3 Click the Edit button.
From the scope editing pane, you can configure and control the scope.

4 Click the Add Signals button. The browser displays an Add New Signals
list.

5 Select the check boxes next to the signal names, and then click Apply. A
Remove Existing Signals list is added above the Add New Signals list.

You do not have to stop a scope to make changes. If the scope is running, the
Web interface stops the scope automatically and then restarts it when the
changes are made. It does not restart the scope if the state was originally
stopped.

When a host scope is stopped (Scope State is set to Interrupted) or finishes
one cycle of acquisition (Scope State is set to Finished), the Get Data
button becomes available. If you click this button, the scope data is retrieved
in comma-separated value (CSV) format. The signals in the scope are spread
across columns. Each row corresponds to one sample of acquisition. The first
column corresponds to the time each sample was acquired.

5-75

5 Signals and Parameters

If Scope State is set to Interrupted, the scope was stopped before it
completed a full cycle of acquisition. The number of rows in the CSV data
still correspond to a full cycle. The last few rows (for which data was not
acquired) are set to 0.

5-76

Signal Logging Basics

Signal Logging Basics

Signal logging acquires signal data during a real-time run and stores it on
the target computer. After you stop the target application, you transfer the
data from target computer to host computer for analysis. Signal logging is
also known as real-time data streaming to the target computer. You can plot
and analyze the data, and later save it to a disk on the host computer.

xPC Target signal logging samples at the base sample time. If you have a
model with multiple sample rates, add xPC Target scopes to the model to
sample signals at the required sample rates.

¢ The xPC Target software does not support logging data with decimation.

e xPC Target Explorer works with multidimensional signals in column-major
format.

® Some signals are not observable. See “Nonobservable Signals and

Parameters” on page 5-140.

You can log signals using file scopes in the model, virtual file scopes in xPC
Target Explorer, outports in the model, MATLAB language, and a web
browser.

5-77

5 Signals and Parameters

5-78

Configure File Scope (xPC) Blocks

xPC Target includes a specialized Scope (xPC) block that you can configure
to save signal and time data to a file on the target computer hard drive,
flash drive, or removable drive. Add a Scope (xPC) block to the model, select
Scope type File, and then configure the other parameters as described

in the following procedure.

4

5

Do not confuse xPC Target Scope blocks with standard Simulink Scope
blocks.

For more information about using xPC Target Scope blocks, see “xPC
Target Scope Usage” on page 5-25.

For more information about target scopes, see “File Scope Usage” on page
5-83.

This procedure uses the model my xpc_osc2 as an example. To access the
example folder, type:

addpath (fullfile(matlabroot, 'help', 'toolbox', 'xpc',
'examples'));

In the MATLAB window, type my_xpc_osc2.
In the Simulink block diagram, double-click the block labeled Scope (xPC).

The Block Parameters: Scope (xPC) dialog box opens. By default, the target
scope dialog box is displayed.

In the Scope number box, a unique number is displayed that identifies
the scope. This number is incremented each time you add a new xPC
Target scope.

This number identifies the xPC Target Scope block and the scope screen on
the host or target computer.

From the Scope type list, select File. The updated dialog box opens.

When the target application is downloaded and started, select the Start
scope when application starts check box to start a scope. The scope
window opens automatically.

Configure File Scope (xPC) Blocks

In Stand Alone mode, this setting is mandatory because the host computer
1s not available to issue a command to start scopes.

6 In the Number of samples box, enter the number of values to be
acquired in a data package. This parameter works in conjunction with
the AutoRestart check box. If you select the AutoRestart box, the file
scope collects data up to Number of samples, and then starts over again,
overwriting the buffer. If you do not select the AutoRestart box, the file
scope collects data only up to Number of samples, and then stops.

7 In the Number of pre/post samples box, enter the number of samples to
save or skip. To save N samples before a trigger event, specify the value N.
To skip N samples after a trigger event, specify the value N. The default is 0.

8 In the Decimation box, enter a value to indicate that data is collected at
each sample time (1) or at less than every sample time (2 or greater).

9 From the Trigger mode list, select FreeRun, Software Triggering,
Signal Triggering, or Scope Triggering.

e If you select FreeRun or Software Triggering, you do not need to enter
additional parameters.

¢ Ifyou select Signal Triggering, then enter the following additional
parameters, as required:

= In the Trigger signal box, enter the index of a signal previously
added to the scope.

This parameter does not apply if the Add signal port to connect a
signal trigger source check box is selected.

= (Alternatively) Click the Add signal port to connect a signal
trigger source check box, then connect an arbitrary trigger signal to
the port Trigger signal.

= In the Trigger level box, enter a value for the signal to cross before
triggering.

= From the Trigger slope list, select one of Either, Rising, or Falling.

e If you select Scope Triggering, then enter the following additional
parameters, as required:

5-79

5 Signals and Parameters

5-80

10

12

13

14

- In the Trigger scope number box, enter the scope number of a
Scope block. If you use this trigger mode, you must also add a second
Scope block to your Simulink model.

= If you want the scope to trigger on a specific sample of the other scope,
enter a value in the text box Sample to trigger on (-1 for end of
acquisition). The default value is 0, and indicates that the triggering
scope and the triggered (current) scope start simultaneously.

For more information on this field, see “Trigger One Scope with
Another Scope” on page 7-21.

In the Filename box, enter a name for the file to contain the signal data.

By default, the target computer writes the signal data to C:\data.dat. For
more about files and file names, see “File Scope Usage” on page 5-83.

From the Mode list, select either Lazy or Commit.

With the Commit mode, each file write operation simultaneously updates
the FAT entry for the file. The file system maintains the actual file size
after each write. With the Lazy mode, the FAT entry is updated only when
the file is closed.

If your system stops responding, you lose WriteSize bytes of data.

In the WriteSize box, enter the block size, in bytes, of the data chunks.
This parameter specifies that a memory buffer of length Number of samples
1s written to the file in chunks of size WriteSize. By default, this parameter
is 512 bytes. Using a block size that is the same as the disk sector size
improves performance.

If your system stops responding, you lose WriteSize bytes of data.

In the Number of samples box, enter the number of values to be acquired
in a data package.

Select the AutoRestart check box to enable the file scope to collect up to
Number of samples data samples, write the buffer to the signal data file,
and then start over again, appending the new data to the end of the signal
data file. Clear the AutoRestart check box to have the file scope collect

Configure File Scope (xPC) Blocks

up to Number of samples data samples, write the buffer to the signal data
file, and then stop.

If the named signal data file already exists, the xPC Target software
overwrites the old data with the new signal data.

The file scope dialog box looks like this figure.

5-81

5 Signals and Parameters

Sink Block Parameters: Scope (xPC) @

xpescopeblock (mask) (link)

*PC Target Scope
Configure scope to acquire signal data.
Scope can be of type target, host, or file.

Parameters
Scope number:

Scope type: [File -

Start scope when application starts
Number of samples:

1000

Number of pre/post samples:

0

Decimation:

1

Trigger mode: |FreeRun =

Filename:

data.dat

Mode: |Lazy -

WriteSize:
512

[AutoRestart

[DK ” Cancel H Help Apply

15 Click OK.

16 From the File menu, click Save As. The model is saved as my_xpc_osc2.

5-82

File Scope Usage

File Scope Usage

e xPC Target supports eight file scopes. Each file scope can contain as many
signals as the target computer has resources to support them.

e With file scopes, after you run the target application, the xPC Target
software generates a signal data file on the target computer, even if it
1s running in Stand Alone mode. To access the contents of the signal
data file that a file scope creates, use the xPC Target file system object
(xpctarget.fs) from a host computer MATLAB window. To view or
examine the signal data, use the readxpcfile utility in conjunction with
the plot function. For further details on the xpctarget.fs file system
object and the readxpcfile utility, see “Using xpctarget.fs Objects” on
page 8-10. Saving signal data to files lets you recover signal data from a
previous run in the event of system failure.

The signal data file can quickly increase in size. Examine the file size
between runs to gauge the growth rate for the file. If the signal data file
grows beyond the available space on the disk, the signal data might be
corrupted.

¢ File names on the target computer are limited to 8 characters in length,
not counting the file extension. If the name is longer than 8 characters,
the software truncates it to 6 characters and adds '~1’ to the end of the
file name.

If you enter just the file name, the file appears in folder C:\. To put the file
in a folder, you must create the folder separately using the target computer
command line or MATLAB language (see xpctarget.fsbase.mkdir).

To configure the scope to generate multiple, dynamically named files in one
session, see “Log Signal Data into Multiple Files” on page 5-93.

¢ Both the Lazy and Commit settings of the Mode box cause the model to open
a file, write signal data to the file, and then close that file at the end of the
session. With the Commit mode, each file write operation simultaneously
updates the FAT entry for the file. This mode is slower, but the file system
maintains the actual file size after each write. With the Lazy mode, the FAT
entry is updated only when the file is closed and not during each file write
operation. This mode is faster, but if the system stops responding before
the file is closed, the file system might not know the actual file size (the file
contents, however, will be intact). If the system stops responding, you lose
an amount of data equivalent to the setting of the WriteSize parameter.

5-83

5 Signals and Parameters

5-84

® For a file scope, the scope acquires data and writes it to the file named in

the FileName parameter. The scope acquires the first N samples into a
memory buffer of size given by the Number of Samples parameter. The
scope writes data from the memory buffer to the file in blocks of size given
by the WriteSize parameter.

If you select the AutoRestart check box, the scope starts over, overwriting
the memory buffer. The additional data is appended to the end of the
existing file.

If you do not select the AutoRestart box, the scope collects data only up to
the number of samples, and then stops.

Select the type of trigger event in the Block Parameters: Scope (xPC)
dialog box by setting Trigger Mode to Signal Triggering, Software
Triggering, or Scope Triggering.

The number of samples N to log after triggering an event is equal to the
value that you entered in the Number of Samples parameter. If you stop
and then start the scope again, the data in the file is overwritten with
the new data.

Create File Scopes Using xPC Target™ Explorer

Create File Scopes Using xPC Target Explorer

You can create a virtual file scope on the target computer using xPC Target
Explorer. These scopes have the full capabilities of the Scope (xPC) block in
File mode, but do not persist past the current execution.

Note For information on using file scope blocks, see “Configure File Scope
(xPC) Blocks” on page 5-78 and “File Scope Usage” on page 5-83.

This procedure uses the model xpcosc as an example. You must have already
completed the following setup:

1 Built and downloaded the target application to the target computer using
Simulink (lfl on the toolbar).

2 Run xPC Target Explorer (command xpcexplr).

3 Connected to the target computer in the Targets pane (Eg on the toolbar).

4 Set property Stop time to inf in the Applications pane (3':%3 on the
toolbar).

To configure a virtual file scope:

1 In the Scopes pane, expand the xpcosc node.

2 To add a file scope, select File Scopes, and then click the Add Scope
icon B on the toolbar.

3 Expand Scope 1, and then click the Properties icon i on the toolbar.
4 In the Scope Properties pane, click Signals.
Add signals from the Target Applications Signals workspace.

5 In the Target Applications pane, expand both the target application node
and the node Model Hierarchy.

5-85

5 Signals and Parameters

6 Select the model node and then click the View Signals icon 4 on the
toolbar.

7 In the Signals workspace, to add signal Signal Generator to Scopel,

click the down arrow next to the Scopes icon ®¥ in its Actions column. A
list of scope types appears. Scope 1 appears under node File Scopes.

8 Click the Add Signal(s) icon £2 next to Scopel under the File Scopes

node.
9 Add signal Integratori to Scope 1 in the same way.
10 In the Scope Properties pane, click File.
11 Enter a name in the File name text box, for example scope1.dat.

12 To start execution, click the target application and then click the Start
icon [on the toolbar.

13 To start Scope 1, click Scope 1 in the Scopes pane, and then click the
Start Scope icon H on the toolbar.

14 To stop Scope 1, click Scope 1 in the Scopes pane, and then click the
Stop Scope icon I on the toolbar.

For file scopes, before adding or removing signals, you must stop the scope
first.

15 To stop execution, click the target application, and then click the Stop
icon [on the toolbar.

16 To view the file that you generated, in the Targets pane, expand the target
computer and then double-click File System.

17 Select C:\. The dialog box looks like this figure.

5-86

Create File Scopes Using xPC Target™ Explorer

File Edit View Window

H>Aa B
Targets * 0 x| STargetPc1
Bl E)
4 MATLAB Session Folders] pos
4 52 TargetPC1 & ™ 53 xrPcosc
= r
¥ Properties i] BMBIO.COM
[- File Sys I B Dos [IBMDOS.COM
v @ xpcosc D PCDOS_7
[COMMAND.COM
[winazo3s6
|] SCOPELDAT
| | AUTCEXECBAT
[] ®pCTRACECSV
. n .T;argetPCl!xpcascflS;:opel{PmpeﬂiésI
Scope Properties
Id: 1 Type: FILE Status: INTERRUPTED
(v Sampling
{ ! 1 TE-QM.M
| Applications -0 x|
pEGEE O
4 TargetPCl/xpcosc &
QProperties File name: scopel.dat
I Graupings
4 Model Hierarchy File mode: Lazy byl
[‘ﬂ]
[[] AutoRestart
Cynamic File Mode
Write Size: 512 (Bytes)
Max write file size: 536870912 (Bytes)
[~ signals (2 Items)
< Delete Signal(s) 5-87
Signal ID Signal Name
5 Signal Generator

5 Signals and Parameters

5-88

To retrieve the file from the target computer for analysis, see “Using
xpctarget.fs Objects” on page 8-10

To rename file SCOPE1.DAT, right click the file name, select Rename, type
the new name in the text box, and then click Enter.

To delete file SCOPE1 .DAT, right click the file name and select Delete.

You can create a virtual file scope from the list of scope types by clicking
Add Scope next to scope type File Scopes.

To group signals, see “Create Signal Groups Using xPC Target Explorer”
on page 5-54.

To configure data sampling, see “Configure Scope Sampling Using xPC
Target Explorer” on page 5-37.

To configure scope triggering, see “Trigger Scopes Interactively Using xPC
Target Explorer” on page 5-40 and “Trigger Scopes Noninteractively Using
xPC Target Explorer” on page 5-44.

To make the active xPC Target Explorer workspaces visible at the same
time, click and hold the tab for one workspace and drag it down until the

following icon appears in the middle of the dialog box: . Continue to
drag until the cursor reaches the required quadrant, and then release the
mouse button. Repeat for the other workspaces.

If a block is unnamed, xPC Target Explorer does not display signals or a
node for that block. To reference such a block, provide an alphanumeric
name for that block, rebuild and download the model to the target
computer, and reconnect the MATLAB session to the target computer.

Configure File Scopes Using xPC Target™ Explorer

Configure File Scopes Using xPC Target Explorer

You can configure your file scopes to facilitate data logging. You can configure
a file scope whether you added a Scope (xPC) block to your model or added
the scope at run time.

This procedure uses the model xpcosc as an example. You must have already
completed the procedure in “Create File Scopes Using xPC Target Explorer”
on page 5-85. Target execution and scopes must be stopped.

1 Select Scope 1, and then open the Properties pane (E@ on the Scopes
toolbar).

2 In the Scope 1 Properties pane, click File.
3 Enter a name in the File name text box, for example scope2.dat.

File names on the target computer are limited to 8 characters in length,
not counting the file extension. If the name is longer than 8 characters,
the software truncates it to 6 characters and adds '~1’ to the end of the
file name.

If you enter just the file name, the file appears in folder C:\. To put the file
in a folder, you must create the folder separately using the target computer
command line or MATLAB language (see xpctarget.fsbase.mkdir).

If a file with this name already exists when you start the file scope, the file
scope overwrites the old data with the new data.

4 Select File mode Commit.

The default File mode is Lazy. In both Lazy and Commit mode, the kernel
opens a file, writes signal data to the file, and closes that file at the end of
the session.

e In Commit mode, each file write operation simultaneously updates the
FAT entry for the file. This mode is slower than Lazy mode, but the file
system maintains the actual file size after each write.

¢ In Lazy mode, the FAT entry is updated only when the file is closed and
not during each file write operation. This mode is faster than Commit
mode, but if the system stops responding before the file is closed, the file

5-89

5 Signals and Parameters

system might not know the actual file size, even though the contents will
be intact. If the system stops responding, you lose an amount of data
equivalent to the setting of the Write Size parameter.

5 Select the AutoRestart check box.

¢ When you select AutoRestart, the file scope collects data up to the
number of samples, and then restarts. It appends the new data to the
end of the file.

¢ When you clear AutoRestart, the file scope collects data up to the
number of samples, and then stops.

6 Leave the Dynamic File Mode check box cleared.

For information on using Dynamic File Mode to generate multiple,
dynamically named files in one session, see “Log Signal Data into Multiple
Files” on page 5-93.

7 Leave Write Size set to the default value of 512.

Using a block size that is the same as the disk sector size improves
performance.

8 Leave Max write file size set to the default value, which is a multiple of
Write Size.

9 Start execution (& on the Applications toolbar).
10 Start Scope 1l on the Scopes toolbar). Let it run for up to a minute.
11 Stop Scope 1 ({f on the Scopes toolbar).

12 Stop execution (M on the Applications toolbar).

5-90

Configure File Scopes Using xPC Target™ Explorer

4\ «PC Target Explorer
File | Edit View Window
H>Aa
Targets -0 x| P TargetPCl € xpcosc (TargetPCl) 43 TargetPCl/xpcosc I Target ~
m
B 5= O |C'-\ ,[=
4 MATLABE Session Filifiir & pos
4 Su TargetPC1 & () xpcosc
¥ Properties T ,g“&?\“w [IBMBIO.COM
= v B3 pos | IBMDOS.COM
£ xpcosc] PCDOS.7
| COMMAND.COM
| WINAZ0.386
[] scopez.pat
| AUTOEXEC.BAT
| XPCTRACE.CSV
7 TargetPCl/xpcosc/Scope 1 (Properties) | w
Scope Properties
Id: 1 Type: FLE Statust INTERRUPTED
|Applications - 0 Xl ¥) Samphng
b B G < ;
4 TargetPCl/xpcosc # \ v Triggering
QProperties
I Groupings '~ File
4 Model Hierarchy T
[w :
_1 File name: scope.dat
File mode: Commit -
AutoRestart
[C] Dynamic File Mode
Write Size: 512 (Bytes)
Wax write file size: 536870912 (Bytes)
(v Signals (2 Items)
: 5-91

“ | m

Signal(s) added to Scope 1

5 Signals and Parameters

5-92

To rename file SCOPE2.DAT, right-click the file name, select Rename, type
the new name in the text box, and then click Enter.

To delete file SCOPE2.DAT, right-click the file name and select Delete.

For information about how to retrieve the file from the target computer for
analysis, see “Using xpctarget.fs Objects” on page 8-10

Log Signal Data into Multiple Files

Log Signal Data into Multiple Files

You can acquire signal data to store in multiple, dynamically named files on
the target computer. You can then examine one file while the scope continues
to acquire data to store in other files. To acquire data for multiple files, add
a file scope to the target application, and then configure that scope to log
signal data to multiple files.

You must use model xpcosc and have completed the setup tasks in “Create
File Scopes Using xPC Target Explorer” on page 5-85.

1 In xPC Target Explorer, in the Scopes pane, expand the xpcosc node.

2 Select File Scopes and expand node File Scopes.

3 Expand Scope 1 and then click the Properties icon m on the toolbar.
4 In the Scope Properties pane, click File.

5 To enable the file scope to create multiple log files based on the same name,
in the File name box, enter a name like scopel_<%>.dat.

This sequence directs the software to create up to nine log files,
scopel_1.dat to scopel_9.dat, on the target computer file system.

You can configure the file scope to create up to 99999999 files
(<%%%%%%%%>.dat). The length of a file name, including the specifier,
cannot exceed eight characters. See the file name description in
xpctarget.xpc.get (target application object).

6 Select the AutoRestart and Dynamic File Mode check boxes.

7 In the Max write file size box, enter a value to limit the size of the signal
log files. This value must be a multiple of the Write Size value. For
example, if the write size is 512, enter 4096 to limit each log file size to
4096 bytes.

8 To start execution, click the target application and then click the Start
icon & on the toolbar.

5-93

5 Signals and Parameters

9 To start Scope 1, click Scope 1 in the Scopes pane and then click the
Start Scope icon [l on the toolbar.

Let Scope 1 run for up to a minute.

10 To stop Scope 1, click Scope 1 in the Scopes pane and then click the
Stop Scope icon {f on the toolbar.

11 To stop execution, click the target application and then click the Stop
icon [on the toolbar.

12 To view the files that you generated, in the Targets pane, expand the
target computer, and then double-click File System.

13 Select C:\. The dialog box looks like this figure.

5-94

Log Signal Data into Multiple Files

File Edit WView Window

H>a B
[Tal"geis - 0 x] /f.ﬁ TargetPC1 .
BB A
4 MATLAB Session Folders Ea DoS
4 5= TargetPC1 & W 5] XPCOSC
¥ Properties o ﬁ'ﬂ] IBMBIO.COM
- File System_ I & Dos [BMDOS.COM
I B xpcosc (] PcDOS.7
[COMMAND.COM
[winaz0.386
[SCOPE1_L1DAT
[AUTOEXEC.BAT
[sCOPEL_2DAT
[SCOPE1_3DAT
B XPCTRACECSV
[] scope1 4pat
[SCOPE1_5.DAT
|] SCOPE1_G.DAT
|| SCOPE1_7.DAT
[sCOPELBDAT
| | SCOPE1_Q.DAT
[Appﬁcations ~ 1 x | 7 n TargetPCl/xpcosc/Scope 1 (Properties) 1
D I @ = @ Scope Properties
4 TargetfCLispoosc @ Id: 1 Type: FILE Status: INTERRUPTED
@Propemes
I Groupings — é :
Lw)
4 Model Hierarchy ¥/ amping
| v Triggering
() File
File name: scopel_l.dat
File mode: Lazy - |
AutoRestart 5-95
Dynarnic File Mode -
Write Size: 512 {Bytes)

5 Signals and Parameters

of Max write file size), the software closes SCOPE1_1.DAT and creates
SCOPE1_2.DAT, SCOPE1_3.DAT, and so on until it fills the last log file,
SCOPE1_9.DAT. If the target application continues to collect data after
the software closes SCOPE1_9.DAT, the software reopens SCOPE1_1.DAT,
SCOPE1_2.DAT, and so on, overwriting the existing contents.

For information about how to retrieve the file from the target computer for
analysis, see “Using xpctarget.fs Objects” on page 8-10

5-96

Configure Outport Logging Using xPC Target™ Explorer

Configure Outport Logging Using xPC Target Explorer

To use xPC Target Explorer for signal logging, add an Outport block to your
Simulink model. Activate logging on the Data Import/Export pane in the
Configuration Parameters dialog box.

This procedure begins with tutorial model xpc_osc3:

1 In the MATLAB window, type xpc_osc3. The xpc_osc3 model opens.

2 In the Simulink window, select and delete the xPC Target Scope block
and its connecting signal.

3 Click Simulation > Model Configuration Parameters.
4 Select node Data Import/Export.
5 Select the Signal logging check box.

6 In Signal logging format, select value Dataset.

5-97

5 Signals and Parameters

_‘E’;ﬁ, Configuration Parameters: xpc_oscd/Cenfiguration (Active)

Select: Load from workspace
Saolver
Data Import/Export [nput: [t, u]
+ Optimization
* Diagnostics [T Tnitial state: |xnitial

Hardware Implementation
Model Referencing

» Simulation Target Save to workspace

» Code Generation Time, State, Output
Time: tout Format: @
States: xout [T] Limit data points to last: | 1000
Output: yout Decimation: 1
[7] Final states: xFinal Save complete SimState in final s
Signals

Signal logging: logsout Signal logging format:

[Configure Signals to Log...

Data Store Memory

Data stores: dsmout
Save options

[] save simulation output as single object |out

[7] Record and inspect simulation output

J [oK H Cancel]E

7 From the File menu, click Save as. Enter xpc_osc4, and then click Save.

8 Click OK.

i

9 In the Simulink window, click the Build Model icon E:l on the toolbar.

10 Run xPC Target Explorer using command xpcexplr.

5-98

Configure Outport Logging Using xPC Target™ Explorer

12

13

14

Connect to the target computer in the Targets pane using the Connect
icon Hm on the toolbar.

To start execution, click the target application, and then click the Start
icon [on the toolbar.

The outputs are the signals connected to Simulink Outport blocks. The
model xpcosc has one Outport block, labeled 1. There are two states. This
Outport block shows the signals leaving the blocks labeled Integratorl
and Signal Generator.

To stop execution, click the target application, and then click the Stop
icon [on the toolbar.

Plot the signals from the Outport block and the states. In the MATLAB
window, type:

plot(tg.TimelLog,tg.Outputlog)

Values for the logs are uploaded to the host computer from the target
application on the target computer. To upload part of the logs, see the
target object method xpctarget.xpc.getlog.

The plotted output looks like this figure.

5-99

5 Signals and Parameters

n Figurel EIIEI

File Edit View Insert Tools Desktop Window Help E

ﬂjlﬂé [% f\-_'\-{fr?@@ﬂ’ 'jr_‘; DlEl UE

10

8

b

-10
0

1 L L 1 1 L L L 1
0.1 0.2 03 04 05 06 07 08 09 1

5-100

Configure Outport Logging Using MATLAB® Language

Configure Outport Logging Using MATLAB Language

You plot the outputs and states of your target application to observe the
behavior of your model, or to determine the behavior when you vary the input
signals and model parameters. Before you configure data logging, you must
complete the following setup:

1 Before you build the target application, add Outport blocks to your
Simulink model. In the Data Import/Export pane of the Configuration
Parameters dialog box, select the Save to workspace check box . See
“Configure Simulation Parameters”.

2 To plot the task execution time, in the xPC Target options pane of the
Configuration Parameters dialog box, verify that the Log Task Execution
Time check box is selected. This check box is selected by default. See “Add
xPC Target Scope Block”.

3 In the xPC Target options pane of the Configuration Parameters dialog
box, set Signal logging buffer size in doubles to a value large enough
to accommodate the logged signals. The default is 100000. If the default
buffer size is not large enough, approximate the size using this formula:

Buffer size in doubles = 90% * Memory / sizeof(double)

Memory is the number of bytes available on the target computer after the
kernel starts. It is displayed in the upper-left corner of the target computer
screen. For example, for a Memory value of 2044MB, set Signal logging
buffer size in doubles to 255500000.

The xPC Target software calculates the number of samples N for a signal
as the value of Signal logging buffer size in doubles divided by the
number of logged signals (1 time, 1 task execution time ([TET]), number of
outputs, number of states). The scopes copy the last N samples from the log
buffer to the target object logs (tg.TimelLog, tg.OutputLog, tg.StateLog,
and tg.TETLog).

After you build, download, and run a target application, you can plot the
state and output signals. This procedure uses the Simulink model xpc_osc4
as an example. You must have already built and downloaded the target
application for that model.

5-101

5 Signals and Parameters

5-102

1 Assign tg to the target computer. In the MATLAB window, type:

tg=xpc

Start the target application. In the MATLAB window, type:

tg.start

The target application starts and runs until it reaches the final time set in
the target object property tg.StopTime.

The outputs are the signals connected to Simulink Outport blocks. The
model xpcosc has one Outport block, labeled 1. There are two states. This
Outport block shows the signals leaving the blocks labeled Integratorl
and Signal Generator.

Plot the signals from the Outport block and the states. In the MATLAB
window, type:

plot(tg.TimelLog,tg.Outputlog)

Values for the logs are uploaded to the host computer from the target
application on the target computer. To upload part of the logs, see the
target object method xpctarget.xpc.getlog.

Configure Outport Logging Using MATLAB® Language

The plot shown is the result of a real-time execution. To compare this plot
with a plot for a non-real-time simulation, see “Simulate Simulink Model
Using MATLAB Language”.

Figure1 (o) o]
File Edit Desktop Window Help E
jjlﬂ&tﬂ % +\.'\-§W?@‘-Eﬂ' @J 0EE =Od

10 T T T T T T T T T

View Insert Tools

3L .

G .

0.1 02 03 04 05 06 07 08 09 1

4 In the MATLAB window, type:

plot(tg.TimelLog,tg.TETLoQ)

Values for the task execution time (TET) log are uploaded to the host
computer from the target computer. To upload part of the logs, see the
target object method xpctarget.xpc.getlog.

5-103

5 Signals and Parameters

5-104

The TET plot shown is the result of a real-time run.

Figurel

File Edit View Desktop

j—jlﬂqti Iy +_\{(r?@.‘|'-__£' @J
.,

x 10
5 T T T T T T T T T

Insert Tools Window Help E

0EE =Od

45

4

35

3

251 .

2+ 4

15+ .

1L 4

The TET is the time to calculate the signal values for the model during
each sample interval. If you have subsystems that run only under certain
circumstances, plotting the TET shows when subsystems were executed
and the additional CPU time required for those executions.

5 In the MATLAB window, type:

tg.AvgTET

The MATLAB interface displays information about the average task
execution time, for example:

Configure Outport Logging Using MATLAB® Language

ans =
5.7528e-006

The percentage of CPU performance is the average TET divided by the
sample time.

Each outport has an associated column vector in tg.OutputLog. You can
access the data that corresponds to a particular outport by specifying
the column vector for that outport. For example, to access the data that
corresponds to Outport 2, use tg.outputlog(:,2).

5-105

5 Signals and Parameters

Configure File Scopes Using MATLAB Language

This procedure shows how to trace signals with file scopes using the Simulink
model xpcosc as an example. You must have already built and downloaded
the target application for this model. It also assumes that you have a serial
communication connection.

Note The signal data file can quickly increase in size. Examine the file size
between runs to gauge the growth rate of the file. If the signal data file grows
beyond the available space on the disk, the signal data might be corrupted.

1 Create a target object tg that represents the target application. Type:
tg=xpctarget.xpc('rs232', 'COM1', '115200')
2 To get a list of signals, type:

tg.ShowSignals="on'

The MATLAB window displays a list of the target object properties for the
available signals. For example, these are the signals for the model xpcosc:

ShowSignals = on

Signals = INDEX VALUE BLOCK NAME LABEL
0 0.000000 Integratori
1 0.000000 Signal Generator
2 0.000000 Gain
3 0.000000 Integrator
4 0.000000 Gain1
5 0.000000 Gain2
6 0.000000 Sum

For more information, see “Monitor Signals Using MATLAB Language”
on page 5-8.

3 Start running your target application. Type:

tg.start

5-106

Configure File Scopes Using MATLAB® Language

The target computer displays the following message:

System: execution started (sample time: 0.0000250)

Create a scope to be displayed on the target computer. For example, to
create a scope with an identifier of 2 and a scope object name of sc2, type:

sc2=tg.addscope('file', 2)

List the properties of the scope object. For example, to list the properties of

the scope object sc2, type sc2.

The MATLAB window displays a list of the scope object properties. Notice
that the scope properties Time and Data are not accessible with a target

scope.

XPC Scope Object
Application
Scopeld
Status
Type
NumSamples
NumPrePostSamples
Decimation
TriggerMode
TriggerScope
TriggerSample
TriggerSignal
TriggerLevel
TriggerSlope
ShowSignals
FileName
Mode
WriteSize
AutoRestart
DynamicFileName
MaxWriteFileSize

Xpcosc

2
Interrupted
File

250

0

1

FreeRun

2

0

-1
0.000000
Either
off

unset
Lazy

512

of f

off
536870912

No name is initially assigned to FileName. After you start the scope, xPC
Target assigns a name for the file to acquire the signal data. This name

5-107

5 Signals and Parameters

5-108

typically consists of the scope object name, Scopeld, and the beginning
letters of the first signal added to the scope.

Add signals to the scope object. For example, to add Integrator1 and
Signal Generator, type

sc2.addsignal ([4,5])
The target computer displays the following messages:

Scope: 2, signal 4 added
Scope: 2, signal 5 added

After you add signals to a scope object, the file scope does not acquire
signals until you start the scope.

Start the scope. For example, to start scope sc2, type:

sc2.start

The MATLAB window displays a list of the scope object properties.
FileName is assigned a default file name to contain the signal data for the
file scope. This name typically consists of the scope object name, Scopeld,
and the beginning letters of the first signal added to the scope.

Application = Xpcosc
Scopeld =2
Status = Pre-Acquiring
Type = File
NumSamples = 250
NumPrePostSamples =0
Decimation =1
TriggerMode = FreeRun
TriggerScope =2
TriggerSample =0
TriggerSignal = 4
TriggerLevel = 0.000000
TriggerSlope = Either
ShowSignals = on
Signals = 4 Integratori

5 : Signal Generator

FileName = c:\sc7Integ.dat

Configure File Scopes Using MATLAB® Language

Mode = Lazy
WriteSize = 512
AutoRestart = off
DynamicFileName = off
MaxWriteFileSize = 536870912

8 Stop the scope. Type:

sc2.stop

9 Stop the target application. In the MATLAB window, type:

tg.stop

The target application on the target computer stops running. The target
computer displays messages similar to the following:

minimal TET: 0.00006 at time 0.004250
maximal TET: 0.000037 at time 14.255250

To access the contents of the signal data file that the file scope creates, use
the xPC Target file system object (xpctarget.fs) from the host computer
MATLAB window. To view or examine the signal data, you can use the
readxpcfile utility with the plot function. For further details on the
xpctarget.fs file system object and the readxpcfile utility, see “Using
xpctarget.fs Objects” on page 8-10.

5-109

5 Signals and Parameters

Log Signals

5-110

Using a Web Browser

When you stop the model execution, you see another section of the Web
browser interface where you can download logging data. This data is in
comma-separated value (CSV) format. This format can be read by most
spreadsheet programs and by the MATLAB interface using the dlmread
function.

You see this section of the Web browser interface only if you have enabled
data logging. Buttons become available only for those logs (states, output, and
TET) that are enabled. If time logging is enabled, the first column of the CSV
file is the time at which data (states, output, and TET values) was acquired.
If time logging is not enabled, only the data is in the CSV file, without time
information.

To perform data logging, you must complete the following setup:

1 Before you build the target application, add Outport blocks to your
Simulink model. In the Data Import/Export pane of the Configuration
Parameters dialog box, select the Save to workspace check box . See
“Configure Simulation Parameters”.

2 To plot the task execution time, in the xPC Target options pane of the
Configuration Parameters dialog box, verify that the Log Task Execution
Time check box is selected. This check box is selected by default. See “Add
xPC Target Scope Block”.

3 In the xPC Target options pane of the Configuration Parameters dialog
box, set Signal logging buffer size in doubles to a value large enough
to accommodate the logged signals. The default is 100000. If the default
buffer size is not large enough, approximate the size using this formula:

Buffer size in doubles = 90% * Memory / sizeof(double)

Memory is the number of bytes available on the target computer after the
kernel starts. It is displayed in the upper-left corner of the target computer
screen. For example, for a Memory value of 2044MB, set Signal logging
buffer size in doubles to 255500000.

The xPC Target software calculates the number of samples N for a signal
as the value of Signal logging buffer size in doubles divided by the

Log Signals Using a Web Browser

number of logged signals (1 time, 1 task execution time ([TET]), number of
outputs, number of states). The scopes copy the last N samples from the log
buffer to the target object logs (tg.TimelLog, tg.OutputLog, tg.StateLog,
and tg.TETLog).

You analyze and plot the outputs and states of your target application to
observe the behavior of your model, or to determine the behavior when you
vary the input signals.

5-111

5 Signals and Parameters

Parameter Tuning Basics

By default, the xPC Target software lets you change parameters in your
target application while it is running in real time.

Note Some parameters are not observable. See “Nonobservable Signals and
Parameters” on page 5-140.

You can improve overall efficiency by inlining parameters. The xPC Target
product supports the Simulink Coder inline parameters functionality.

(For more information about inlined parameters, see the Simulink Coder
documentation.)

By default, inlined parameters are nontunable. If you want to make some
of the inlined parameters tunable, do so through the Model Parameter
Configuration dialog box (see “Configure Model to Tune Inlined Parameters”
on page 5-131).

5-112

Tune Parameters Using xPC Target™ Explorer

Tune Parameters Using xPC Target Explorer

You can use xPC Target Explorer to change parameters in your target
application while it is running in real time or between runs. You do not need
to rebuild the Simulink model, set the Simulink interface to external mode, or
connect the Simulink interface with the target application.

This procedure uses model xpcosc. You must have already completed the
setup tasks in “Create Host Scopes Using xPC Target Explorer” on page 5-58.

1 Select the target application in the Applications pane (for example,
Xpcosc).

2 To start execution, click the target application and then click the Start
icon & on the toolbar.

3 To start Scope 1, click Scope 1 in the Scopes pane and then click the
Start Scope icon Hf on the toolbar.

5-113

5 Signals and Parameters

4\ xPC Target Explorer
File Edit View Window

cEX
5 i 4
Targets > QX BB TargetPCl/vpcesc/Scope 1 (Host Scope Viewer) = xpcosc (TargetPC1)

% 5 5 0 =
4 MATLAB Session '
O= TargetPCl &

@ @ Qw [@H mE §f

5.6700 5.6800 5.6900 5.7000 57100

Applications * 1 X ﬂ TargetPCl/xpcosc/Scope 1 (Properties) .
B EGeH Scope Properties

4 TargetPCl/xpcosc &

:_BP i Id: 1 Type: HOST Statust INTERRUPTED
i Properties
Groupings Y i

4 Model Hierarchy
Ll

~ | Triggering

~ | Signals (2 Items)

Delete Signal(s)

Signal ID Signal Mame
5 Signal Generator
4 Integratorl

Ready

5-114

Tune Parameters Using xPC Target™ Explorer

4 In the Target Applications pane, expand both the target application
node and node Model Hierarchy.

5 Select the model node, and then click the View Parameters icon EJ on
the toolbar.

The Parameters workspace opens, showing a table of parameters with
properties and actions.

6 Click the arrow next to the Gain for block Gaini. The Values text box
opens, containing the initial value 400.

7 Type 100 into the text box, and then click outside the box.

To revert the Gain for block Gain1 to its previous value, click the Revert

icon &Iﬂ

8 Click the Apply parameter value(s) changes icon Eﬁé‘

The xPC Target Explorer window looks like this figure.

5-115

5 Signals and Parameters

5-116

4\ xPC Target Explorer
File Edit

0>

Targets

B om s

View

Window

* 0 x

4 MATLAE Session
O= TargetPC1l &

Applications

PEGEH

4 TargetPCl/xpcosc &
$3Properties
Groupings
4 Model Hierarchy

L]

Ready

Bl TargetPCl/xpeose/Scope 1 (Host Scope Viewer)

Asl E B £

EH[Ele @

:ﬁj xpcosc (TargetPC1) i

L6400 21.6500

21.6600

21.6700

21.6800

21.6800

Mame
Gain
Gain
& @] 100
Gain

InitialCondition
InitialCondition
Amplitude

Frequency

Is Edited

Falze

False

False
False
False
False

False

Block Name

Fain

Gainl

Gaind

Integrator
Integratorl
Signal Generator

Signal Generator

Tune Parameters Using xPC Target™ Explorer

9 To stop Scope 1, click Scope 1 in the Scopes pane, and then click the
Stop Scope icon [on the toolbar.

10 To stop execution, click the target application, and then click the Stop
icon [on the toolbar.

To group parameters, see “Create Parameter Groups Using xPC Target
Explorer” on page 5-118

5-117

5 Signals and Parameters

Create Parameter Groups Using xPC Target Explorer

When testing a complex model composed of many reference models, you must
tune parameters from multiple parts and levels of the model. To do so, create
a parameter group.

This procedure uses the model xpcosc as an example. You must have already
completed the following setup:

1 Built and downloaded the target application to the target computer using
Simulink (l:l on the toolbar).

2 Run xPC Target Explorer (command xpcexplr).

3 Connected to the target computer in the Targets pane (Epg on the toolbar).

To create a parameter group:

1 In the Target Applications pane, expand the target application node, and
then right-click the Groupings node.

2 Click New Parameter Group.
3 In the Add New Parameter Group Item dialog box, enter a name in the
Name text box (for example, ParamGroupl.par). In the Location text

box, enter a folder for the group file.

4 Click OK. A new parameter group appears, along with its Parameter
Group workspace.

5 In the Target Applications pane, expand both the target application node
and the node Model Hierarchy.

6 Sclect the model node, and then click the View Parameters icon E_I on
the toolbar.

The Parameters workspace opens, showing a table of parameters with
properties and actions.

5-118

Create Parameter Groups Using xPC Target™ Explorer

7 In the Parameter Groups workspace, to add parameter Amplitude to
ParamGroupl.par, click the down arrow next to the Parameters

Grouping icon [f1 in its Actions column.

A list of parameter groups appears, including ParamGroupl.par.
8 Click the Add Parameter icon &3 next to ParamGroupl.par.
9 Add parameter Frequency to ParamGroupl.par in the same way.

10 Click in the Parameter Group workspace, and then click the Save
icon E on the toolbar.

5-119

5 Signals and Parameters

5-120

File Edit View Window

> [§

[Tar"geis AL X] /@ ¥pcosc (TargetPC1)]
El 5! ! Name Is Edited Block Marne Actions |
4 MATLAB Session (v) Gain False Gain
| 5a TargetPCl & (@) Gain
_ False Gainl
B@o |
(¥) Gain False Gain2
".ij_\' InitialCondition False Integrator
if_' InitialCondition False Integratorl
"f.‘ Amplitude False Signal Generator
'::f] Frequency False Signal Generator
[Ap;':il?caﬁans - ‘J'(—I iﬁ ParamGroupl.par
’ . @ £ IH' ¢ Delete Parameters(s)
4 TargetPCl/xpcosc & MName Is Edited Block Marne Format Dim
 Bproperties (v] Amplitude False Signal Generator [F5 = | [1,
M Groupings| = E—
A {] f -
b Pl v Frequency False Signal Generator |F3 | [1,]
4 Model Hierarchy
%] xpcosc

Ready

Create Parameter Groups Using xPC Target™ Explorer

® To tune individual parameters in the selected group, see “Tune Parameters
Using xPC Target Explorer” on page 5-113.

* To make both workspaces visible at the same time, click and hold the tab
for one workspace and drag it down until the following icon appears in the

middle of the dialog box: . Continue to drag until the cursor reaches the
required quadrant, and then release the mouse button.

5-121

5 Signals and Parameters

Tune Parameters Using MATLAB Language

You use the MATLAB functions to change block parameters. With these
functions, you do not need to set the Simulink interface to external mode. You
also do not need to connect the Simulink interface with the target application.

You can download parameters to the target application while it is running or
between runs. You can change parameters in your target application without
rebuilding the Simulink model and, if required, change them back to their
original values. using xPC Target functions.

This procedure uses the Simulink model xpcosc as an example. You must
have already created and downloaded the target application for that model
and assigned tg to the target computer.

1 In the MATLAB window, type:

tg.start

The target computer displays the following message:

System: execution started (sample time: 0.001000)

2 Display a list of parameters. Type:

tg.ShowParameters='on'

The ShowParameters command displays a list of properties for the target
object.

ShowParameters = on

Parameters =

PARAMETER BLOCK
INDEX VALUE TYPE SIZE NAME NAME
0 1000000 DOUBLE Scalar Gain Gain
1 400 DOUBLE Scalar Gain Gain1
2 1000000 DOUBLE Scalar Gain Gain2

5-122

Tune Parameters Using MATLAB® Language

Initial
3 0 DOUBLE Scalar Condition Integrator
4 0 DOUBLE Scalar Initial Integratori
Condition
5 4 DOUBLE Scalar Amplitude Signal
Generator
6 20 DOUBLE Scalar Frequency Signal
Generator

3 Change the gain. For example, to change the Gainl block, type:
pt = tg.setparam(1,800)

The setparam method returns a structure that stores the parameter index,
the previous value, and the new value.

As soon as you change parameters, the changed parameters in the target
object are downloaded to the target application. The host computer displays
the following message:

pt =
parIndexVec: 1

OldValues: 400
NewValues: 800

The target application runs. The plot frame updates the signals for the
active scopes.

4 Stop the target application. In the MATLAB window, type:
tg.stop

The target application on the target computer stops running. The target
computer displays messages like the following:

minimal TET: 0.000023 at time 1313.789000
maximal TET: 0.000034 at time 407.956000

5 To reset to the previous values, type:

setparam(tg,pt.parIndexVec,pt.0ldValues)

5-123

5 Signals and Parameters

ans =
parIndexVec: 5
OldValues: 800
NewValues: 100

Note Method names are case sensitive and must be complete. Property
names are not case sensitive and do not need to be complete, as long as they
are unique.

5-124

Tune Parameters Using Simulink® External Mode

Tune Parameters Using Simulink External Mode

You use Simulink external mode to connect your Simulink block diagram to
your target application. The block diagram becomes a graphical user interface
to your target application. You set up the Simulink interface in external mode
to establish a communication channel between your Simulink block window
and your target application.

In Simulink external mode, wherever you change parameters in the Simulink
block diagram, the Simulink software downloads those parameters to the
target application while it is running. You can change parameters in your
program without rebuilding the Simulink model to create a new target
application.

After you download your target application to the target computer, you can
connect your Simulink model to the target application. This procedure uses
the Simulink model xpcosc as an example. You must have already created
and downloaded the target application for that model.

1 In the Simulink window, click Simulation > Mode > External. A check
mark appears next to the menu item External, and Simulink external
mode is activated.

2 Click the Connect To Target icon @-.g on the toolbar. The current Simulink
model parameters are downloaded from the host computer to your target
application.

3 Click the Run icon & on the toolbar.

The target application begins running on the target computer, and the
target computer displays the following message:

System: execution started (sample time: 0.000250)

4 From the Simulation block diagram, double-click the block labeled Gainl

5 In the Block Parameters: Gainl parameter dialog box, the Gain text box,
enter 800. Click OK.

5-125

5 Signals and Parameters

5-126

As soon as you change a model parameter and click OK, the changed
parameters in the model are downloaded to the target application.

6 From the Simulation menu, click Disconnect from Target.

The Simulink model is disconnected from the target application. If you then
change a block parameter in the Simulink model, the target application
does not change.

7 In the MATLAB window, type:

tg=xpc('TargetPC1"')
tg.stop

The target application on the target computer stops running, and the target
computer displays the following messages:

minimal TET: 0.000023 at time 1313.789000
maximal TET: 0.000034 at time 407.956000

Tune Parameters Using a Web Browser

Tune Parameters Using a Web Browser

The Parameters pane displays the tunable parameters in your model. Row
and column indices for vector/matrix parameters are also shown.

After you connect a Web browser to the target computer, you can use the
Parameters page to change parameters in your target application while it is
running in real time.

1 In the left frame, click Parameters. The browser loads the Parameter
List pane into the right frame.

If the parameter is a scalar parameter, the current parameter value is
shown in a box that you can edit.

If the parameter is a vector or matrix, click a button to open another page
that displays the vector or matrix. You can then edit the parameter.

2 Enter a new parameter value into one or more of the parameter boxes,
and then click Apply.

The new parameter values are uploaded to the target application.

5-127

5 Signals and Parameters

Save and Reload Parameters Using MATLAB Language

After you have a set of target application parameter values that you are
satisfied with, you can save those values to a file on the target computer.
You can then later reload these saved parameter values to the same target
application.

You can save parameters from your target application while the target
application is running or between runs. You can save and restore parameters
in your target application without rebuilding the Simulink model. You must
load parameters to the same model from which you save the parameter file. If
you load a parameter file to a different model, the behavior is undefined.

You save and restore parameters with the target object methods
saveparamset and loadparamset.

Requirements:

® You have a target application object named tg.
® You have assigned tg to the target computer.
® You have downloaded a target application to the target computer.
® You have parameters to save. For more information, see:
= “Tune Parameters Using MATLAB Language” on page 5-122
= “Tune Parameters Using Simulink External Mode” on page 5-125

= “Tune Parameters Using a Web Browser” on page 5-127

Save the Current Set of Target Application Parameters

To save a set of parameters to a target application, use the saveparamset
method. The target application can be stopped or running.

1 Identify the set of parameter values that you want to save.

2 Select a descriptive file name to contain these values. For example, use
the model name in the file name.

3 In the MATLAB window, type either

5-128

Save and Reload Parameters Using MATLAB® Language

tg.saveparamset ('xpc_osc4_parami')

The xPC Target software creates a file named xpcosc4_parami in the
current folder of the target computer, for example, C: \xpcosc4_parami.

¢ To restore parameter values to a target application, see “Load Saved
Parameters to a Target Application” on page 5-129.

e To list the parameters and values stored in the parameter file, see “List the
Values of Parameters Stored in a File” on page 5-130.

Load Saved Parameters to a Target Application

To load a set of saved parameters to a target application, use the
loadparamset method.

You must load parameters to the same model from which you save the
parameter file. If you load a parameter file to a different model, the behavior
is undefined.

This section assumes that you have a parameters file saved from an earlier
run of saveparamset (see “Save the Current Set of Target Application
Parameters” on page 5-128).

1 From the collection of parameter value files on the target computer, select
the one that contains the parameter values you want to load.

2 In the MATLAB window, type:

tg.loadparamset('xpc_osc4_parami')

The xPC Target software loads the parameter values into the target
application.

5-129

5 Signals and Parameters

5-130

Tip
® To load the parameter set automatically during startup, see “Load a
parameter set from a file on the designated target file system”.

® To list the parameters and values stored in the parameter file, see “List the
Values of Parameters Stored in a File” on page 5-130.

List the Values of Parameters Stored in a File

To list parameters and their values, load the file for a target application, and
then turn on the ShowParameters target object property.

You must have a parameters file saved from an earlier run of saveparamset
(see “Save the Current Set of Target Application Parameters” on page 5-128).

1 Stop the target application. In the MATLAB window, type:
tg.stop

2 Load the parameter file. Type:
tg.loadparamset('xpc_osc4_parami');

3 Display a list of parameters. Type:

tg.ShowParameters='on'

The MATLAB window displays a list of parameters and their values for
the target object.

Configure Model to Tune Inlined Parameters

Configure Model to Tune Inlined Parameters

This procedure describes how you can globally inline parameters for a model,
and then specify which of these parameters you still want to be tunable.

Note You cannot tune inlined parameters that are structures.

The following procedure uses the Simulink model xpcosc as an example.

1 In the MATLAB Command Window, type xpcosc. The model is displayed
in the Simulink window.

2 Select the blocks of the parameters that you want to make tunable. For
example, this procedure makes the signal generator’s amplitude parameter
tunable. Use the variable A to represent the amplitude.

3 Double-click the Signal Generator block, and then enter A for the Amplitude
parameter. Click OK.

4 In the MATLAB Command Window, assign a constant to that variable.
For example, type:

A =4
The value is displayed in the MATLAB workspace.

5 From the Simulink window, click Simulation > Model Configuration
Parameters.

6 In the Configuration Parameters dialog box, select the Signals and
Parameters node under Optimization.

7 In the right pane, select the Inline parameters check box.
8 Click Configure.

The Model Parameter Configuration dialog box opens. The MATLAB
workspace contains the constant you assigned to A.

9 Select the line that contains your constant. Click Add to table.

5-131

5 Signals and Parameters

ﬂ Model Parameter Configuration: xpcosc

Description

Cefine the global (tunable) parameters for your model. These parameters affect:

1. the simulation by providing the ability to tune parameters during execution, and

2. the generated code by enabling access to parametears by other modules.

Source list |- Global itunahle) parameters

|MATLAB wiorkspace v | Marme Starage class Starage type qua

1A |Simu|inkGInbaI (Auio) e l
Mame
1_

Refresh list Add to table [ey Rery
Ready [Ok J [Cancel] [Help J E

Add the remaining global parameters that you want to tune.
10 Click Apply, and then click OK.
11 In the Configuration Parameters dialog box, click Apply, and then OK.
12 Save the model. For example, save it as xpc_osc5.
13 Build and download the model to your target computer.

14 To tune inline parameters, see either:

¢ “Tune Inlined Parameters Using xPC Target Explorer” on page 5-134

5-132

Configure Model to Tune Inlined Parameters

e “Tune Inlined Parameters Using MATLAB Language” on page 5-139

5-133

5 Signals and Parameters

Tune Inlined Parameters Using xPC Target Explorer

This procedure describes how you can tune inlined parameters through the
xPC Target Explorer.

The procedure uses the model xpc_osc5 from “Configure Model to Tune
Inlined Parameters” on page 5-131 as an example. You must have already
completed the setup tasks in “Create Host Scopes Using xPC Target Explorer”
on page 5-58.

1 Select the target application in the Applications pane (for example,
XpcC_oschH).

2 To start execution, click the target application, and then click the Start
icon b on the toolbar.

3 To start Scope 1, click Scope 1 in the Scopes pane, and then click the
Start Scope icon H on the toolbar.

5-134

Tune Inlined Parameters Using xPC Target™ Explorer

4\ xPC Target Explorer

File Edit View

Targets

& Cs on 3

Window

- 0 x

.:BE,S TargetPCl/xpc oscS p Bl TargetPCl/xpc_osc/Scope 1 {Host Scope Viewer

4 MATLAE Session

o= -

Applications

b MG

4 TargetPCl/xpc_oscs
I Groupings
4 Model Hierarchy

% xpc_oscs

Ready

H[@a aa Aw @ me §

3.4300 13.4400 13.4500

34600 134700 154800 13.4900
IT TargetPCl/xpc oscS5/Scope 1 (Properties)
Scope Properties

Id: 1 Type: HOST Status: INTERRUPTED

~ | Sampling

+ | Triggering

~ | Signals (2 Items)

Delete Signal(s)

Signal ID

Signal Name

3 Signal Generator

4 Integratorl

d [LI

5-135

5 Signals and Parameters

5-136

4 In the Target Applications pane, expand both the target application node
and the Model Hierarchy node.

5 Select the model node, and then click the View Parameters icon E_l on the
toolbar. The Parameters workspace opens, showing a table of parameters
with properties and actions.

6 Click the arrow next to parameter A for block Model Parameters. The
Values text box opens, containing the initial value 4.

7 Type 2 into the text box, and then click outside the box.

To revert parameter A for block Model Parameters to its previous value,
click the Revert icon #':'ﬂ

8 Click the Apply parameter value(s) changes icon Bﬁﬂ

The dialog looks like this figure.

Tune Inlined Parameters Using xPC Target™ Explorer

4\ xPC Target Explorer
File Edit

= >

Targets

LY

View Window

4 MATLAB Session

-
o

| Applications
b |G £

00 10.2000

[] TargetPCl/xpc_oscS/Scope 1 (Properties)

E xpc_osc5 (TargetPC1)

— Signal Gener

Integratorl

4 TargetPCl/xpc_oscs &
@3 Properties
I Groupings
4 Model Hierarchy

5|

Name

o ¢l

Is Edited

False

Block Name Actions

8 ~]

Meodel Parameters

Cimensions

11

Ready

5-137

5 Signals and Parameters

9 To stop Scope 1, click Scope 1 in the Scopes pane, and then click the
Stop Scope icon [on the toolbar.

10 To stop execution, click the target application, and then click the Stop
icon [on the toolbar.

5-138

Tune Inlined Parameters Using MATLAB® Language

Tune Inlined Parameters Using MATLAB Language

This procedure describes how you can tune inlined parameters through the
MATLAB interface. You must have already built and downloaded the model
from the topic “Configure Model to Tune Inlined Parameters” on page 5-131 to
the target computer. The model must already be running.

You can tune inlined parameters using a parameter ID.

¢ Use the getparamid function to get the ID of the inlined parameter that
you want to tune. For the block_name parameter, leave a blank (' ').

e Use the setparam function to set the new value for the inlined parameter.

1 Save the following code in a MATLAB file. For example, change_inlineA.

tg=xpc; %Create xPC Target object

pid=tg.getparamid('','A"'); %Get parameter ID of A

if isempty(pid) %Check value of pid.

error('Could not find A');

end

tg.setparam(pid,100); %If pid is valid, set parameter value.
2 Execute that MATLAB file. Type:

change_inlineA
3 To see the new parameter value, type:

tg.showparameters='on'

The tg object information is displayed, including the parameter lines:
NumParameters = 1

ShowParameters = on

Parameters = INDEX VALUE TYPE SIZE PARAMETER NAME BLOCK
NAME

0 100 DOUBLE Scalar A

5-139

5 Signals and Parameters

Nonobservable Signals and Parameters

Observable signals are those signals that you can monitor, trace, and log.
Nonobservable signals are those signals that exist in the target application,
but are not observable from the host computer.

You cannot observe the following types of signals:
e Virtual or bus signals (including signals from bus and virtual blocks). You

can access these signals from nonvirtual source blocks.

To observe a virtual signal, add a Gain block with gain 1.0 (unit gain) and
observe its output.

To observe a virtual bus, add a Gain block with unit gain to each individual
signal.

¢ Signals that you have optimized with block reduction optimization. You
can access these signals by making them test points.

e Signals of complex or multiword data types.
Observable parameters are those parameters you can tune. Nonobservable
parameters are those parameters that exist in the target application, but are

not tunable from the host computer. You cannot observe the parameters
of complex or multiword data types.

5-140

Execution Modes

¢ “Execution Modes” on page 6-2
¢ “Interrupt Mode” on page 6-3
e “Polling Mode” on page 6-5

6 Execution Modes

6-2

Execution Modes

Interrupt mode is the default real-time execution mode for the xPC Target
kernel. In certain conditions, you might want to change the real-time
execution mode to polling mode. A good understanding of interrupt and
polling modes will help you to use them effectively, and to decide under which
circumstances it makes sense for you to switch to the polling mode.

A third execution mode, freerun, is also available. In this mode, the target
application thread does not wait for the timer and the kernel runs the
application as fast as possible. The time between each execution might vary if
the target application has conditional code. The three execution modes are
mutually exclusive. For a description of how to use the freerun mode, see “Set
Configuration Parameters”.

Interrupt Mode

Interrupt Mode

Interrupt mode is the default real-time execution mode for the kernel. This
mode provides the greatest flexibility and is the mode you should choose for

applications that execute at the given base sample time without overloading
the CPU.

The scheduler implements real-time single-tasking and multitasking
execution of single-rate or multirate systems, including asynchronous events
(interrupts). Additionally, background tasks like host-target communication
or updating the target screen run in parallel with sample-time-based model
tasks. This allows you to interact with the target system while the target
application is executing in real time at high sample rates. This is made
possible by an interrupt-driven real-time scheduler that is responsible for
executing the various tasks according to their priority. The base sample time
task can interrupt other tasks (larger sample time tasks or background tasks)
and execution of the interrupted tasks resumes as soon as the base sample
time task completes operation. This gives a quasi parallel execution scheme
with consideration to the priorities of the tasks.

Latencies Introduced by Interrupt Mode

Compared to other modes, interrupt mode has more advantages. The
exception is the disadvantage of introducing a constant overhead, or latency,
that reduces the minimal possible base sample time to a constant number.
The overhead is the sum of various factors related to the interrupt-driven
execution scheme and can be referred to as overall interrupt latency. The
overall latency consists of the following parts, assuming that the currently
executing task is not executing a critical section and has therefore not
disabled interrupt sources:

¢ Interrupt controller latency — In a PC-compatible system the interrupt
controller is not part of the x86-compatible CPU but part of the CPU chip
set. The controller is accessed over the I/O-port address space, which
introduces a read or write latency of about 1 us for each 8-bit/16-bit register
access. Because the CPU has to check for the interrupt line requesting an
interrupt, and the controller has to be reset after the interrupt has been
serviced, a latency of about 5 us is introduced for the interrupt controller.

6-3

6 Execution Modes

6-4

¢ CPU hardware latency — Modern CPUs try to predict the next couple of
instructions, including branches, by the use of instruction pipelines. If
an interrupt occurs, the prediction fails and the pipeline has to be fully
reloaded. This process introduces an additional latency. Additionally,
because of interrupts, cache misses will occur.

¢ Interrupt handler entry and exit latency — Because an interrupt can stop
the currently executing task at an arbitrary instruction and the interrupted
task has to resume when the interrupting task completes execution, its
state has to be saved and restored accordingly. This includes saving CPU
data and address registers, including the stack pointer. In the case that
the interrupted task executed floating-point unit (FPU) operations, the
FPU stack has to be saved as well (108 bytes on a Pentium CPU). This
introduces additional latency.

¢ Interrupt handler content latency — If a background task has been
executing for some time, say in a loop, its data will be available in the cache.
When an interrupt occurs and the interrupt service handler is executed,
the interrupt handler data could be purged from the cache, causing the
CPU to reload it from slower RAM. This introduces additional latency.
Because of its unpredictable nature, an interrupt generally reduces the
optimal execution speed or introduces latency,.

The kernel in interrupt mode is close to optimal for executing code on a
PC-compatible system. However, interrupt mode introduces an overall
latency of about 8 us. This is a significant amount of time when considering
that a 1 GHz CPU can execute thousands of instructions within 8 us. This
time is equivalent to a Simulink model containing a hundred nontrivial
blocks. Additionally, because lower priority tasks have to be serviced as well,
at least 5% of headroom is required, which can cause additional cache misses
and therefore nonoptimal execution speed.

Polling Mode

Polling Mode

Polling mode for the kernel is designed to execute target applications at
sample times close to the limit of the hardware (CPU). Using polling mode
with high-speed and low-latency I/O boards and drivers allows you to achieve
smaller sample times for applications that you cannot achieve using the
interrupt mode of the xPC Target software.

Polling mode has two main applications:

¢ Control applications — Control applications of average model size and I/O
complexity that are executed at very small sample times (Ts = 5 to 50 ps)

e DSP applications — Sample-based DSP applications (mainly audio and
speech) of average model size and I/O complexity that are executed at very
high sample rates (Fs = 20 to 200 kHz)

Introducing Polling Mode

Polling mode for the kernel does not have the 8 us of latency that interrupt
mode does. This is because the kernel does not allow interrupts, so the CPU
can use this extra time for executing model code.

Polling mode is sometimes seen as a “primitive” or “brute force” real-time
execution scheme. Nevertheless, when a real-time application executes at a
given base sample time in interrupt mode and overloads the CPU, switching
to polling mode is often the only alternative to get the application to execute
at the required sample time.

Polling means that the kernel waits in an empty while loop until the time
at which the next model step has to be executed is reached. Then the next
model step is executed. At least a counter implemented in hardware has

to be accessible by the kernel in order to get a base reference for when the
next model step execution has to commence. The kernel polls this hardware
counter. If this hardware counter must be outside the CPU, e.g., in the chip
set or even on an ISA or PCI board, the counter value can only be retrieved
by an I/O or memory access cycle that again introduces latency. This latency
usually eats up the freed-up time of polling mode. Fortunately, since the
introduction of the Pentium CPU family from Intel, the CPU is equipped with
a 64 bit counter on the CPU substrate itself, which commences counting at
power-up time and counts up driven by the actual clock rate of the CPU.

6 Execution Modes

6-6

Even a highly clocked CPU is not likely to lead to an overflow of a 64 bit
counter (2764 * 1e-9 (1 GHz CPU) = 584 years). The Pentium counter comes
with the following features:

® More precise measurements — Because the counter counts up with the
CPU clock rate (~1 GHz nowadays), time measurements even in the
microsecond range are very precise, leading to small real-time errors.

¢ QOverflow handler not required— Because the counter is 64 bits wide, in
practical use overflow does not occur, avoiding the CPU-time overhead of
handling overflows.

® Minimal latency — The counter resides on the CPU. Reading the counter
value can be done within one CPU cycle, introducing minimal latency.

The polling execution scheme does not depend on interrupt sources to notify
the code to continue calculating the next model step. While this frees the
CPU, it means that code that is part of the exclusively running polling loop is
executed in real time — even components, which have so far been executed in
background tasks. Because these background tasks are usually non-real-time
tasks and can use a lot of CPU time, do not execute them. This is the main
disadvantage of polling mode. To be efficient, only the target application’s
relevant parts should be executed. In the case of the xPC Target software,
this is the code that represents the Simulink model itself.

Therefore, host-target communication and target display updating are
disabled. Because polling mode reduces the features of the xPC Target product
to a minimum, you should choose it only as the last possible alternative to
reach the required base sample time for a given model. Therefore, do the
following before you consider polling mode:

® The model is optimal concerning execution speed — First, you should
run the model through the Simulink profiler to find possible speed
optimizations using alternative blocks. If the model contains continuous
states, the discretization of these states will reduce model complexity
significantly, because a costly fixed-step integration algorithm can be
avoided. If continuous states cannot be discretized, you should use the
integration algorithm with the lowest order that still produces the required
numerical results.

Polling Mode

e Use the fastest available computer hardware — Use the CPU with the
highest clock rate available for a given PC form factor. For the desktop
form factor, this would mean a clock rate above 3 GHz; for a mobile
application, e.g., using the PC/104 form factor, this would mean a clock rate
above 1 GHz. Executing xpcbench at the MATLAB prompt gives a relative
measure of CPU performance when running typical target applications.

® Use the lowest latency I/O hardware and drivers available — Many xPC
Target applications communicate with hardware through I/O hardware
over either an ISA or PCI bus. Because each register access to such I/0
hardware introduces a comparably high latency time (~1 us), the use of the
lowest latency hardware/driver technology available is crucial.

® The base sample time is about 50 ps or less — The time additionally
assigned to model code execution in polling mode is only about 8 ps. If the
given base sample time of the target application exceeds about 50 pus, the
possible percentage gain is rather small. Other optimization technologies
might have a bigger impact on performance.

Setting the Polling Mode

Polling mode is an alternative to the default interrupt mode of the kernel.
This means that the kernel on the bootable media created by the GUI allows
running the target application in both modes without using another boot disk.

By default the target application executes in interrupt mode. To switch to
polling mode, you need to pass an option to the System target file command.

The following example uses xpcosc.

1 In the Simulink window, select Simulation > Model Configuration
Parameters.

The Configuration Parameters dialog box opens.
2 In the left pane, click the Code Generation node.
3 In the TLC options edit field, specify the option

-axpcCPUClockPoll=CPUClockRateMHz

6-7

6 Execution Modes

6-8

You must assign the target computer CPU clock rate because the Pentium
on-chip counter used for polling mode counts up with the CPU clock rate. If
the clock rate 1s provided, the kernel can convert clock ticks to seconds and
vice versa. If the required clock rate is not provided, the target application
does not execute at the required base sample time. You can find out about
the CPU clock rate of the target computer by rebooting the target computer
and checking the screen output during BIOS execution time. The BIOS
usually displays the CPU clock rate in MHz right after the target computer
has been powered up.

For example, if your target computer is a 1.2 GHz AMD Athlon, specify the
following option in the TLC options edit field:

-axpcCPUClockP01l1=1200

Polling Mode

_E:;: Configuration Parameters: xpcosc/Configuration (Active) E
select: Target selection
Salver System target file: xpctarget.tid Browse
Data Import/Export
» Optimization Language: C
* Diagnostics . Description: ¥PC Target
Hardware Implementation
Model Referencing Build process
» Simulation Target
- Code Generation Compiler optimization level: Optimizations on (faster runs) ']
TLC options: -axpcCPUCIockPoll=1200
Makefile configuration
Generate makefile
Make command: make_rtw
Template makefile: xpec_default_tmf
Code Generation Advisor
Select objective: [Unspeciﬂed ']
Check model before generating code: [Oﬁ’ "] [Check model ...]

[Generate code only

[Package code and artifacts

Zip file name:

0K ” Cancel][Help Apply

If you want to execute the target application in interrupt mode again,
either remove the option or assign a CPU clock rate of 0 to the option:

-axpcCPUClockPoll=0

If you make a change to the TLC options field, you need to rebuild the target
application for the change to take effect. Building the target application,
downloading it, and preparing it for a run then work exactly the same way as

they did with default interrupt mode.

After the download of the target application has succeeded, the target screen
displays the mode, and if polling mode is activated, it additionally displays
the defined CPU clock rate in MHz. This allows you to check the setting.

6 Execution Modes

6-10

Restrictions Introduced by Polling Mode

As explained above, polling mode executes the Simulink-based target
application in real time exclusively. While the target application is executing
in polling mode, background tasks are inactive, including those for host-target
communication, target screen updating, and UDP transfers. This is because
interrupts of the target computer are fully disabled during the execution of
the target application. On one hand, this improves polling performance; on
the other hand, background tasks are not serviced.

The following topics list the relevant restrictions of polling mode, which are
otherwise available in the default interrupt mode.

Host-Target Communication Is Not Available During the
Execution of the Target Application
If the target application execution is started in polling mode, e.g., with

start(tg)

host-target communication is disabled throughout the entire run, or in other
words until the stop time is reached. Each attempt to issue a command like

tg

leads to a communication-related error message. Even the start(tg)
command to start polling mode execution returns such an error message,
because the host side does not receive the acknowledgment from the target
before timing out. The error message when executing start(tg) is not
avoidable. Subsequently, during the entire run, it is best not to issue
target-related commands on the host, to avoid displaying the same error
message over and over again.

As a consequence, it is not possible to issue a stop(tg) command to stop the
target application execution from the host side. The target application has to
reach its set stop time for polling mode to be exited. You can use

tg.stoptime=x

before starting the execution, but once started the application executes until
the stop time is reached.

Polling Mode

Nevertheless, there is a way to stop the execution interactively before
reaching the target application stop time. See “Controlling the Target
Application” on page 6-13.

If the target application execution finally reaches the stop time and polling
mode execution is stopped, host-target communication will begin functioning
again. However, the host-target communication link might be in a bad state.
If you still get communication error messages after polling mode execution
stops, type the command

xpctargetping

to reset the host-target communication link.

After the communication link is working again, type
tg

to resync the target object on the host side with the most current status of
the target application.

Target Screen Does Not Update During the Execution of the
Target Application

As with the restriction mentioned above, target screen updating is disabled
during the entire execution of the target application. Selecting the Graphics
mode check box in the Target Properties pane of xPC Target Explorer
does not work. You should therefore clear the Graphics mode check box,
producing text output only.

Session Time Does Not Advance During the Execution of the
Target Application

Because interrupts are disabled during a run, the session time does not
advance. The session time right before and after the run is therefore the
same. This is a minor restriction and should not pose a problem.

6-11

6 Execution Modes

6-12

The Only Rapid-Prototyping Feature Available Is Data Logging

Because host-target communication and target screen updating are disabled
during the entire run, most of the common rapid-prototyping features of the
xPC Target product are not available in polling mode:

® Parameter tuning

e Signal monitoring

® Scope objects

® Applications using the xPC Target APIs
® The Internet browser interface

® xpctargetspy and similar utilities

The only rapid-prototyping feature available is signal data logging, because
signal data is acquired independently of the host, and logged data is retrieved
only after the execution is stopped. Nevertheless, being able to log data allows
gathering useful information about the behavior of the target application.
Signal logging becomes a very important feature in polling mode.

Multirate Simulink Models Cannot Be Executed in Multitasking
Mode on the Target Computer

Because of the polling mode execution scheme, executing Simulink-based
target applications in multitasking mode is not possible. The modeling

of function-call subsystems to handle asynchronous events (interrupts) is

not possible either. This can be a hard restriction, especially for multirate
systems. Multirate systems can be executed in single-tasking mode, but
because of its scheme for sequential execution of subsystems with different
rates, the CPU will most likely overload for the given base sample time. As an
important consequence, polling mode is only a feasible alternative to interrupt
mode if the model has a single rate or if it can be converted to a single-rate
model. A single-rate model implies continuous states only, discrete states
only, or mixed continuous and discrete states, if the continuous and discrete
subsystems have the same rate. Use the Simulink Display > Sample

Time > Colors feature to check for the single rate requirement. Additionally,
to avoid a possible switch to multitasking mode, set the Tasking Mode
property in the Solver pane of the Configuration Parameters dialog box to
SingleTasking.

Polling Mode

1/O Drivers Using Kernel Timing Information Cannot Be Used
Within a Model

Some xPC Target drivers use timing information exported from the kernel
to, for example, detect time-outs. Because the standard timing engine of the
kernel does not run in polling mode, the required timing information is not
passed back to the drivers. Therefore, in polling mode you cannot use drivers
that import the header file time_xpcimport.h. This is a current restriction
only. In a future version of polling mode, drivers will use the Pentium counter
for timing instead.

Controlling the Target Application

As mentioned, you cannot interact with the running target application in
polling mode. This is especially restrictive for the case of stopping the model
execution before the application has reached the stop time that was defined
before the execution started. Because polling mode tries to be as optimal as
possible, rapid-prototyping features other than signal logging are disabled.
But because I/0O driver blocks added to the model are fully functional, you can
use I/0O drivers to get to a minimal level of interactivity.

Stopping a target application using polling mode — You can use a low-latency
digital input driver for the digital PCI board in your model, which reads in a
single digital TTL signal. The signal is TTL low unless the model execution
should be stopped, for which the signal changes to TTL high. You can connect
the output port of the digital input driver block to the input port of a Stop
simulation block, found in the standard Simulink block library. This stops the
execution of the target application, depending on the state of the digital input
signal. You can either use a hardware switch connected to the board-specific
input pin or you can generate the signal by other means. For example, you
could use another digital I/O board in the host machine and connect the

two boards (one in the host, the other in the target) over a couple of wires.
You could then use the Data Acquisition Toolbox™ product to drive the
corresponding TTL output pin of the host board to stop the target application
execution from within the MATLAB interface.

Generally, you can use the same software/hardware setup for passing

other information back and forth during run time of the target application.
However, you must implement features other than signal logging at the model
level and therefore must minimize the additional latency introduced by the
feature. For example, being able to interactively stop the target application

6-13

6 Execution Modes

6-14

execution is paid for by the additional 1 ps latency required to read the digital
signal over the digital I/O board. However, if you need to read digital inputs
from the plant hardware anyway, and lines are available, you get the feature
for free.

Polling Mode Benchmarks

This is preliminary information. Benchmarks were executed using a 1 GHz
AMD Athlon machine. For more information about benchmarks, see xpcbench
or type help xpcbench in the MATLAB Command Window.

¢ The minimum achievable base sample time for benchmark model Minimal
is 1 ps with signal logging disabled and 2 ps with signal logging enabled.

¢ The minimum achievable base sample time for model f14 using an ode4
fixed-step integration algorithm is 4 ps with signal logging disabled and 5
us with signal logging enabled.

A more realistic model that has been benchmarked is a second-order
continuous controller accessing real hardware over two 16 bit A/D channels
and two 16 bit D/A channels. The analog I/O board used is the fast and
low-latency PMC-ADADIO from http://www.generalstandards.com, which
is used in conjunction with some recently developed and heavily optimized
(lowest latency) xPC Target drivers for this particular board.

® The minimum achievable base sample time for this model using an ode4
fixed-step integration algorithm is 11 ps with signal logging disabled and
12 us with signal logging enabled. This equals a sample rate of almost
100 kHz.

® The achievable sample time for the same model in interrupt mode is ~28 us
or a sample rate of ~33 kHz. For this application, the overall performance
increase using polling mode is almost a factor of 3.

Polling Mode and Multicore Processors

If your target computer has multicore processors, enabling the multicore
processor supports removes the following restrictions. Other restrictions
still apply.

http://www.generalstandards.com

Polling Mode

Tip For more on how to enable multicore processor support, see “Multicore
Processor Configuration” on page 26-4.

® Host-target communication is now available during the execution of the
target application.

e Target screen now updates during the execution of the target application.

¢ External interrupts are now allowed during the execution of the real-time
model. This does not mean that you can trigger your model with an
external interrupt.

* File scopes can now log data into a file on the target computer.

6-15

6 Execution Modes

6-16

Execution Using MATLAB Scripts

An important part of the “Rapid Prototyping” and “Hardware in the
Loop” workflows is preparing stress test and regression test scripts.
The xPC Target product includes specialized MATLAB classes and
functions for setting up the target environment, booting the target
computer, loading and running the target application, and displaying
and recording the results. You can do these tasks using MATLAB
functions and target and scope class objects.

e Chapter 7, “Targets and Scopes in the MATLAB Interface”
¢ Chapter 8, “Logging Signal Data with FTP and File System Objects”

Targets and Scopes 1n the
MATLAB Interface

e “Target Driver Objects” on page 7-2

e “Create Target Objects” on page 7-3

e “Display Target Object Properties” on page 7-4

e “Set Target Object Property Values” on page 7-5

® “Get Target Object Property Values” on page 7-6

e “Use Target Object Methods” on page 7-7

® “Target Scope Objects” on page 7-8

* “Display Scope Object Properties for One Scope” on page 7-10

* “Display Scope Object Properties for the Current Scopes” on page 7-11
® “Set Scope Property Values” on page 7-12

® “Get Scope Property Values” on page 7-13

e “Use Scope Object Methods” on page 7-14

® “Acquire Signal Data with File Scopes” on page 7-15

® “Acquire Signal Data into Dynamically Named Files” on page 7-16
® “Scope Trigger Configuration” on page 7-18

® “Pre- and Post-Triggering of Scopes” on page 7-19

* “Trigger One Scope with Another Scope” on page 7-21

e “Acquire Gap-Free Data Using Two Scopes” on page 7-28

7 Targets and Scopes in the MATLAB® Interface

7-2

Target Driver Objects

The xPC Target software uses a target object (of class xpctarget.xpc) to
represent the target kernel and your target application. Use target object
functions to run and control real-time applications on the target computer
with scope objects to collect signal data.

An understanding of the target object properties and methods helps you to
control and test your application on the target computer.

A target object on the host computer represents the interface to a target
application and the kernel on the target computer. You use target objects to
run and control the target application.

When you change a target object property on the host computer, information
is exchanged with the target computer and the target application.

To create a target object:

1 Build a target application. The xPC Target software creates a target object
during the build process.

2 Use the target object constructor function xpctarget.xpc. In the MATLAB
Command window, type tg = xpctarget.xpc.

Target objects are of class xpctarget.xpc Class. A target object has
associated properties and methods specific to that object. The target
application object methods allow you to control a target application on
the target computer from the host computer. You enter target application
object methods in the MATLAB window on the host computer, or you can
use MATLAB code scripts. To access the help for these methods from the
command line, use the syntax:

help xpctarget.xpc/method_name

If you want to control the target application from the target computer, use
target computer commands (see “Target Computer Command-Line Interface”
on page 10-2).

Create Target Objects

Create Target Objects
To create a target object:

1 Build a target application. The xPC Target software creates a target object
during the build process.

2 To create a single target object, or to create multiple target objects in your
system, use the target object constructor function xpctarget.xpc with
arguments. For example, the following creates a target object connected
to the host through an RS-232 connection. In the MATLAB Command
Window, type:

tg = xpctarget.xpc('rs232','COM1',"'115200")

The resulting target object is tg.

Using this method clarifies which target object is associated with a
particular target computer.

3 To check a connection between a host and a target, use the target function
xpctarget.xpc.targetping. For example, type:

tg.targetping
4 To create a single target object, or to create the first of many targets in your

system, use the target object constructor function xpctarget.xpc without
arguments. For example, in the MATLAB Command Window, type:

tg = xpctarget.xpc

The resulting target object is tg.

Note If you use xpctarget.xpc without arguments to create a target object,
use xPC Target Explorer to configure your target computer. Doing so clarifies
which target object is associated with a particular target computer.

7-3

7 Targets and Scopes in the MATLAB® Interface

7-4

Display Target Object Properties

You might want to list the target object properties to monitor a target
application. The properties include the execution time and the average task
execution time.

After you build a target application and target object from a Simulink model,
you can list the target object properties. This procedure uses the default
target object name tg as an example.

1 In the MATLAB window, type:
tg

The current target application properties are uploaded to the host
computer. MATLAB displays a list of the target object properties with
the updated values.

The target object properties for TimeLog, StateLog, OutputLog, and TETLog
are not updated at this time.

2 Type:

tg.start

The Status property changes from stopped to running. The log properties
change to Acquiring.

For a list of target object properties with a description, see the target object
function xpctarget.xpc.get (target application object).

Set Target Object Property Values

Set Target Object Property Values

You can change a target object property by using the xPC Target software set
method or the dot notation on the host computer. (For limitations on target
property changes to sample times, see “User Interaction”.)

With the xPC Target software, you can use a function syntax or an
object property syntax to change the target object properties. The syntax
set(target_object, property_name, new_property value) can be
replaced by:

target_object.property_name = new_property_value

For example, to change the stop time for target object tg, in the MATLAB
window, type one of the following:

tg.stoptime = 1000
tg.set('stoptime',1000)
set(tg, 'stoptime’,1000)

When you change a target object property, the new property value is
downloaded to the target computer. The xPC Target kernel then receives the

information and changes the behavior of the target application.

To get a list of the writable properties, type set(target _object). The build
process assigns the default name of the target object to tg.

7-5

7 Targets and Scopes in the MATLAB® Interface

7-6

Get Target Object Property Values

You can list a property value in the MATLAB window or assign that
value to a MATLAB variable. With the xPC Target software, you can
use either a function syntax or an object property syntax. The syntax
get(target_object, property_name) can be replaced by:

target_object.property_name

For example, to access the stop time for target object tg, in the MATLAB
window, type one of the following:

endrun = tg.stoptime
endrun tg.get('stoptime’')
endrun = get(tg, 'stoptime’)

To get a list of readable properties, type target object. Without assignment
to a variable, the property values are listed in the MATLAB window.

Signals are not target object properties. To get the value of the Integratori
signal from the model xpcosc, in the MATLAB window, type one of the
following:

tg.getsignal(0)
outputvalue = getsignal(tg,0)

0 1s the signal index.

Note Method names are case sensitive. You must type the entire name.
Property names are not case sensitive. You do not need to type the entire
name, as long as the characters you do type are unique for the property.

Use Target Object Methods

Use Target Object Methods

Use the method syntax to run a target object method. The syntax
method_name(target_object, argument_list) can be replaced with:

target_object.method_name(argument_list)

Unlike properties, for which partial but unambiguous names are permitted,
you must enter method names in full, in lowercase. For example, to add

a target scope with a scope index of 1, in the MATLAB window, type one
of the following:

tg.addscope('target',1)
addscope(tg, 'target',1)

7 Targets and Scopes in the MATLAB® Interface

7-8

Target Scope Objects

The xPC Target software uses scope objects to represent scopes on the target
computer. Use scope object functions to view and collect signal data.

The xPC Target software uses scopes and scope objects as an alternative
to using Simulink scopes and external mode. A scope can exist as part of a
Simulink model system or outside a model system.

e A scope that is part of a Simulink model system is a scope block. You add
an xPC Target scope block to the model, build an application from that
model, and download that application to the target computer.

® A scope that is outside a model is not a scope block. For example, if you
create a scope with the xpctarget.xpc.addscope method, that scope is
not part of a model system. After the model has been downloaded and
initialized, you add this scope to the model.

This difference affects when and how the scope executes to acquire data.

Scope blocks inherit sample times. A scope block in the root model or a normal
subsystem executes at the sample time of its input signals. A scope block in a
conditionally executed (triggered/enabled) subsystem executes whenever the
containing subsystem executes. In the latter case, the scope might acquire
samples at irregular intervals.

A scope that is not part of a model executes at the base sample time of the
model. Therefore, it might acquire repeated samples. For example, if the
model base sample time is 0.001, and you add to the scope a signal whose
sample time is 0.005, the scope acquires five identical samples for this signal,
and then the next five identical samples, and so on.

Understanding the structure of scope objects helps you to use the MATLAB
command-line interface to view and collect signal data. A scope object on the
host computer represents a scope on the target computer. You use scope
objects to observe the signals from your target application during a real-time
run or analyze the data after the run is finished.

To create a scope object:

Target Scope Objects

® Add an xPC Target scope block to your Simulink model, build the
model to create a scope, and then use the target object method
xpctarget.xpc.getscope to create a scope object.

e Use the target object method xpctarget.xpc.addscope to create a scope,
create a scope object, and assign the scope properties to the scope object.

Upon creation, the xPC Target software assigns the required scope object
class for the scope type:

® Target scopes — xpctarget.xpcsctg Class, created by calling
xpctarget.xpc.getscope with scope type target.

® Host scopes — xpctarget.xpcschost Class, created by calling
xpctarget.xpc.getscope with scope type host.

® File scopes — xpctarget.xpcfs Class, created by calling
xpctarget.xpc.getscope with scope type file.

A scope object has associated properties and methods specific to that scope
type. These scope types are based on a common type, xpctarget.xpcsc
Class, that encompasses their common properties and methods. If you create
multiple scopes of different types for one model and combine those scopes, for
example, into a scope vector, the xPC Target software creates this object.

The scope object methods allow you to control scopes on your target computer.
If you want to control the target application from the target computer, use

target computer commands (see “Target Computer Command-Line Interface”
on page 10-2).

7-9

7 Targets and Scopes in the MATLAB® Interface

7-10

Display Scope Object Properties for One Scope

To List the properties of a single scope object, sc1, in the MATLAB window,
type one of the following:

sc1 = tg.getscope(1)
sci getscope(tg,1)

MATLAB creates the scope object sc1 from a previously created scope.

The current scope properties are uploaded to the host computer. MATLAB
displays a list of the scope object properties with the updated values. Because
sc1 1s a vector with a single element, you could also type sc1(1) or sc1([1]).

Note Only scopes of type host store data in the properties
scope_object.Time and scope_object.Data.

For a list of target object properties with a description, see the target function
xpctarget.xpc.get (target application object).

Display Scope Object Properties for the Current Scopes

Display Scope Object Properties for the Current Scopes

To list the properties of the current scope objects associated with the target
object tg, in the MATLAB window, type one of the following:

tg.getscope
getscope(tg)

MATLAB displays a list of the scope objects associated with the target object.

Alternatively, type one of the following:

allscopes = tg.getscope
allscopes getscope(tg)

The current scope properties are uploaded to the host computer. MATLAB
displays the scope object properties with updated values. To list some of the
scopes, use the vector index. For example, to list the first and third scopes,
type allscopes([1,3]).

For a list of target object properties with a description, see the target function
xpctarget.xpc.get (target application object).

7-11

7 Targets and Scopes in the MATLAB® Interface

7-12

Set Scope Property Values

With the xPC Target software, you can use either a function syntax or an
object property syntax. The syntax set(scope_object, property_name,
new_property_value) can be replaced by:

scope_object(index_vector).property_name = new_property_value

For example, to change the trigger mode for the scope object sc1, in the
MATLAB window, type one of the following:

sc1.triggermode = 'signal'
sc1.set('triggermode', 'signal')
set(scl, 'triggermode', ‘'signal')

You cannot use dot notation to set vector object properties. To assign
properties to a vector of scopes, use the set method. For example, assume you
have a variable sc12 for two scopes, 1 and 2. To set the NumSamples property
of these scopes to 300, in the MATLAB window, type the following:

set(sc12, 'NumSamples',300)

To get a list of the writable properties, type set(scope_object).

Note Method names are case sensitive. You must type the entire name.
Property names are not case sensitive. You do not need to type the entire
name as long as the characters you do type are unique for the property.

Get Scope Property Values

Get Scope Property Values

You can list a property value in the MATLAB window or assign that value
to a MATLAB variable. With the xPC Target software, you can use either a
function syntax or an object property syntax.

The syntax get(scope_object_vector, property_name) can be replaced by:

scope_object_vector(index_vector).property_name

For example, to assign the number of samples from the scope object sc1, in
the MATLAB window, type one of the following:

numsamples = sci1.NumSamples
numsamples = sci1.get('NumSamples')
numsamples get(sc1, 'NumSamples')

You cannot use dot notation to get the values of vector object properties. To
get properties of a vector of scopes, use the get method. For example, assume
you have two scopes, 1 and 2, assigned to the variable sc12.

To get the value of NumSamples for these scopes, in the MATLAB window,
type the following:

get(sc12, 'NumSamples')

You get a result like the following:

ans =
[300]
[300]

To get a list of readable properties, type scope_object. The property values
are listed in the MATLAB window.

Note Method names are case sensitive. You must type the entire name.
Property names are not case sensitive. You do not need to type the entire
name as long as the characters you do type are unique for the property.

7-13

7 Targets and Scopes in the MATLAB® Interface

Use Scope Object Methods

Use the method syntax to run a scope object method. The syntax
method_name (scope_object_vector, argument_list) can be replaced with
either of:

scope_object.method_name(argument_list)
scope_object_vector(index_vector).method_name(argument_list)

Unlike properties, for which partial but unambiguous names are permitted,
enter method names in full, in lowercase. For example, to add signals to
the first scope in a vector of all scopes, in the MATLAB window, type one
of the following:

allscopes(1).addsignal([0,1])
addsignal(allscopes(1), [0,1])

7-14

Acquire Signal Data with File Scopes

Acquire Signal Data with File Scopes

You can acquire signal data into a file on the target computer. To do so,
you add a file scope to the application. After you build an application and
download it to the target computer, you can add a file scope to that application.

Note Remember to start your scope to acquire signal data.

For example, to add a file scope named sc to the application, and to add signal
4 to that scope:

1 In the MATLAB window, type:

sc=tg.addscope('file')

The xPC Target software creates a file scope for the application.
2 To add signal 4, type:

sc.addsignal(4)

3 To start the scope, type:

sc.start

4 To start the target application, type:

tg.start

The xPC Target software adds signal 4 to the file scope. When you start the
scope and application, the scope saves the signal data for signal 4 to a file, by
default named C:\data.dat.

For more information on file scopes, see “Configure File Scope (xPC) Blocks”
on page 5-78.

If you want to acquire signal data into multiple files, see “Acquire Signal Data
into Dynamically Named Files” on page 7-16.

7-15

7 Targets and Scopes in the MATLAB® Interface

7-16

Acquire Signal Data into Dynamically Named Files

You can acquire signal data into multiple, dynamically named files on the
target computer. For example, you can acquire data into multiple files to
examine one file while the scope continues to acquire data into other files. To
acquire data in multiple files, add a file scope to the application. After you
build an application and download it to the target computer, you can add a
file scope to that application. You can then configure that scope to log signal
data to multiple files.

Note Remember to start your scope to acquire signal data.

For example, configure a file scope named sc to the application with the
following characteristics:

® Logs signal data into up to nine files whose sizes do not exceed 4096 bytes.
¢ (Creates files whose names contain the string file .dat.

¢ Contains signal 4.

1 In the MATLAB window, type:

tg.StopTime=-1;

This parameter directs the target application to run indefinitely.
2 To add a file scope, type:

sc=tg.addscope('file');
3 To enable the file scope to create multiple log files, type:

sc.DynamicFileName='on"';

Enable this setting to enable logging to multiple files.

4 To enable file scopes to collect data up to the number of samples, and then
start over again, type:

Acquire Signal Data into Dynamically Named Files

sc.AutoRestart='on';

Use this setting for the creation of multiple log files.
5 To limit each log file size to 4096, type:

sc.MaxWriteFileSize=4096;

You must use this property. Set MaxWriteFileSize to a multiple of the
WriteSize property.

6 To enable the file scope to create multiple log files with the same name
pattern, type:

sc.Filename="'file_<%>.dat';

This sequence directs the software to create up to nine log files, file 1.dat
to file 9.dat on the target computer file system.

7 To add signal 4 to the file scope, type:
sc.addsignal(4);

8 To start the scope, type
sc.start

9 To start the target application, type
tg.start

The software creates a log file named file_1.dat and writes data to that file.
When the size of file 1.dat reaches 4096 bytes (value of MaxWriteFileSize),
the software closes the file and creates file_2.dat. When its size reaches
4096 bytes, the software closes it and creates file_3.dat, and so on.

The software repeats this sequence until it fills the last log file, file 9.dat.
If the target application continues to run and collect data after file 9.dat,
the software reopens file 1.dat and overwrites the existing contents. It
cycles through the other log files sequentially. If you do not retrieve the data
from existing files before they are overwritten, the data is lost.

If you want to acquire signal data into a single file, see .

7-17

7 Targets and Scopes in the MATLAB® Interface

7-18

Scope Trigger Configuration

You can configure xPC Target scopes to acquire data right away, or define
triggers for scopes such that the xPC Target scopes wait until they are
triggered to acquire data. You can configure xPC Target scopes to start
acquiring data when a predefined trigger condition is met. The exact condition
depends on the trigger mode that you select.

® Freerun — Acquires data as soon as the scope 1s started (default).

e Software — Acquires data in response to a user request, such as a call
to a scope method xpctarget.xpcsc.trigger or the scope function
xPCScSoftwareTrigger.

® Signal — Acquires data when a particular signal has crossed a preset level.

® Scope — Acquires data based on when another (triggering) scope starts.

You can use several properties to further refine when a scope starts to acquire
data. For example, if you want the scope to be triggered when another signal
crosses a certain value, use Signal trigger mode. Specify the following:

® The signal to trigger the scope.

® The trigger level that the signal must cross to trigger the scope to start
acquiring data.

e Whether the scope is triggered on a rising signal, falling signal, or either
one.

The trigger point is the sample at which the scope trigger condition is
satisfied. For signal triggering, the trigger point is the sample at which the
trigger signal passes through the trigger level. At the trigger point, the
scope acquires the first sample. By default, scopes start acquiring data from
the trigger point onwards. You can modify this behavior using pre- and
post-triggering with the NumPrePostSamples scope property. See “Pre- and
Post-Triggering of Scopes” on page 7-19.

Pre- and Post-Triggering of Scopes

Pre- and Post-Triggering of Scopes

By default, the scope starts acquiring data at the same time as the trigger
event (the trigger point). In some cases, you want to observe the sequence of
values that led to the trigger, so you start acquiring data a given number

of samples before the trigger event (pre-triggering). In other cases, you
want to observe the system settling down after the trigger event, so you
delay acquiring data a given number of samples after the trigger event
(post-triggering).

Use the NumPrePostSamples scope property to specify pre- and post-triggering.
A negative value indicates pre-triggering and a positive value indicates
post-triggering. For example, suppose P 1s the value of NumPrePostSamples for
Scope 1 and TP 1is the trigger point, the sample where the trigger event occurs.

® P = 0 — Scope 1 starts acquiring data immediately at trigger point TP.

Simple triggering (P = 0)

TP
First Sample End of
Acquired Acquisition

T

Tri r
Event

7-19

7 Targets and Scopes in the MATLAB® Interface

® P < 0— Scope 1 starts acquiring data |P| samples before trigger point TP.

Pre-triggering (P < 0)

First Sample End of
Acquired N Aoqmlsmon
TP
T Ld (N+P) ;
Trigger
Event

® P > 0— Scope 1 starts acquiring data P samples after trigger point TP.

Post-triggering (P> 0)

End of
TP Acquisition
i (N +P) ;
P N R
F— First Sample
Acquired
Trigger
Event

7-20

Trigger One Scope with Another Scope

Trigger One Scope with Another Scope

When you have started two scopes that you want to keep synchronized, you
can trigger one scope with another to acquire data. Set up the first scope with
the trigger of your choice, and then trigger the second scope from the first.

In the following setup, Scope 1 triggers Scope 2.

1 Two scope objects are configured as a vector with the command:

sc = tg.addscope('host', [1 2]);

2 For Scope 1, set the following values:

sc(1).Scopeld = 1
sc(1).NumSamples = N1
sc(1).NumPrePostSamples = P1

3 For Scope 2, set the following values:

(2).Scopeld = 2
(2) .NumSamples = N2
sc(2).TriggerMode = 'Scope’
(2).TriggerScope = 1
(2) .NumPrePostSamples = P2

Because Scope 2 is triggered by Scope 1, the trigger point TP is the same for
both scopes. However, different samples can be acquired by Scopes 1 and 2.

Scope-Triggered Data Acquisition

Some representative relationships between data acquisitions by Scope 1
and Scope 2 are shown in the following figures. P1 and P2 are the values

of NumPrePostSamples for Scopes 1 and 2. TP is the trigger point, the
sample where a trigger event occurs, for both Scopes 1 and 2. Scope 2 begins
acquiring data as described.

7-21

7 Targets and Scopes in the MATLAB® Interface

® P1 = 0and P2 = 0 — Scopes 1 and 2 start acquiring data immediately at
trigger point TP.

TP Scope 1Simple triggering (P1=0)

First Sample End of
Acquired Acquisition

N1

TP Scope 2 Simple triggering (P2 =0)

First Sample End of
Acquired Acquisition

N2

Tri r
Evont

7-22

Trigger One Scope with Another Scope

® P1 < 0and P2 > 0 — Scope 1 starts acquiring data |P1| samples before
trigger point TP. Scope 2 starts acquiring data P2 samples after trigger
point TP.

Scope 1 Pre-triggering (P1 < 0)

First Sample End of
Acquired Acquisition
i N1 i
i TP i
P (N1 +P1)
I Scope 2 Post-triggering (P2 > 0)
i End of
TP Acquisition
| (N2 + P2) |
_ P2 N2 |
 First Sample '
Y Acquired
Trigger
Event

7-23

7 Targets and Scopes in the MATLAB® Interface

® P1 > 0and P2 < 0— Scope 1 starts acquiring data P1 samples after trigger
point TP. Scope 2 starts acquiring data |P2| samples before trigger point TP.

Scope 1 Post-triggering (P1 > Q)

A End of
TP uisition
; (N1 +P1) e
L P1 L N1 j
"~ First Sample '
| Acquired
| Scope 2 Pre-triggering (P2 < 0)
First Sample | End of
Acquired : Acquisition
i | N2 |
ezl (N2 + P2) |
Trigger
Event

Trigger Sample Setting

For additional flexibility in scope triggering, you can use the Scope 2 trigger
sample setting.

sc(2).TriggerSample = range 0 to (N + P1 - 1)

7-24

Trigger One Scope with Another Scope

® sc(2).TriggerSample = 0 (default) — Scope 2 triggers when Scope 1
triggers. Trigger point TP is the same sample for both scopes.

TP Scope 1Simple triggering (P1=0)

First Sample End of
Acquired Acquisition

N1

TP Scope 2 Simple triggering (P2 =0)

First Sample End of
Acquired Acquisition

N2

Tri r
Evont

7-25

7 Targets and Scopes in the MATLAB® Interface

® sc(2).TriggerSample = ts > 0 — Scope 2 triggers ts samples after
Scope 1 1s triggered. Trigger point TP2 for Scope 2 is ts samples after TP1

for Scope 1.
Scope 2 Delayed triggering (ts > Q)
TP1
First Sample End of
Acquired Acquisition
N1
TP2
First Sample End of
| Acquired Acquisition
L ts N2

|

Tri r
Event

Setting sc(2) .TriggerSample to a value ts larger than (N + P - 1) does

not cause an error. It implies that Scope 2 cannot be triggered, because
Scope 1 cannot acquire more than (N + P - 1) samples after TP.

7-26

Trigger One Scope with Another Scope

® sc(2).TriggerSample = -1 (special case) — Causes Scope 2 to start
acquiring data from the sample after Scope 1 stops acquiring.

Scope 2 Special delayed triggering (ts = -1)

TP
irst S End of
First Sample Ol
Aoquireg Aoqmlsnmn
i N1
o First Sample End of

Event Acquired Acquisition
¥ N2

7-27

7 Targets and Scopes in the MATLAB® Interface

Acquire Gap-Free Data Using Two Scopes

With two scopes, you can acquire gap-free data. Gap-free data is data that
two scopes acquire consecutively, without overlap. The first scope acquires
data up to sample N, then stops. The second scope begins to acquire data at
sample N+1,

In the following example, the TriggerMode property of Scope 1 is set to
'Software'. This setting allows Scope 1 to be triggered when it receives the
MATLAB command sci1.trigger.

Software Trigoer
(initialization)

Scope 1
MumSamples=500
TriggerScope=2
TriggerSample= -1
Trigger at
Trigger at Arcquisition End
Acquisition End

Scope ?
NumSamples=500
Trigoerscope=1
Triggersample= -1

To programmatically acquire gap-free data with two scopes:
1 Build and download the Simulink model xpcosc to the target computer.

2 In the MATLAB Command Window, assign tg to the target computer and
set the StopTime property to 1. For example:

tg=xpctarget.xpc
tg.StopTime = 1;

7-28

Acquire Gap-Free Data Using Two Scopes

3 Add two host scopes to the target application. You can assign the two scopes
to a vector, sc, so that you can work with both scopes with one command.

sc = tg.addscope('host', [1 2]);
4 Add the signals of interest (0 and 1) to both scopes.

addsignal(sc,[0 1]);

5 Set the NumSamples property for both scopes to 500 and the TriggerSample
property for both scopes to -1. With this property setting, each scope
triggers the next scope at the end of its 500 sample acquisition.

set(sc, 'NumSamples', 500, 'TriggerSample', -1)

6 Set the TriggerMode property for both scopes to 'Scope'. Set the
TriggerScope property such that each scope is triggered by the other.

set(sc, 'TriggerMode', 'Scope');
sc(1).TriggerScope = 2;
sc(2).TriggerScope = 1;

7 Set up storage for time, t, and signal, data acquisition.

t =11;
data zeros(0, 2);

8 Start both scopes and the model.

start(sc);
start(tg);

Both scopes receive exactly the same signals, O and 1.
9 Trigger scope 1 to start acquiring data.

scNum = 1;
sc(scNum).trigger;

Setting scNum to 1 indicates that scope 1 will acquire data first.

10 Start acquiring data using the two scopes to double buffer the data.

7-29

7 Targets and Scopes in the MATLAB® Interface

7-30

while (1)

% Wait until this scope has finished acquiring 500 samples

% or the model stops (scope is interrupted).

while ~(strcmp(sc(scNum).Status, 'Finished') |

strcmp(sc(scNum) .Status, 'Interrupted’

% Stop buffering data when the model stops.

if strcmp(tg.Status, 'stopped')

break

end

% Save the data.

t(end + 1 : end + 500)

data(end + 1 : end + 500, :)

% Restart this scope.

start(sc(scNum));

% Switch to the next scope.
%Shortcut for if(scNum==1) scNum=2;else scNum=1,end
scNum = 3 - scNum;
end

| ...
)), end

sc(scNum) .Time;
sc(scNum) .Data;

11 When done, remove the scopes.

% Remove the scopes we added.
remscope(tg,[1 2]);

Following 1s a complete code listing for the preceding double-buffering data
acquisition procedure. After you download the model (xpcosc) to the target
computer, you can copy and paste this code into a MATLAB file and run it.

The communication speed between the host and target computer must be fast

enough to handle the number of samples and can acquire the full data set
before the next acquisition cycles starts. In a similar way, you can use more
than two scopes to implement a triple- or quadruple-buffering scheme.

% Assumes model xpcosc.mdl has been built and loaded on the target computer.
% Attach to the target computer and set StopTime to 1 sec.

tg = xpctarget.xpc;

tg.StopTime = 1;
% Add two host scopes.

SC

tg.addscope('host', [1 2]);

% [0 1] are the signals of interest. Add to both scopes.
addsignal(sc,[0 1]1);

°
i)

Each scope triggers next scope at end of a 500 sample acquisition.

Acquire Gap-Free Data Using Two Scopes

set(sc, 'NumSamples', 500, 'TriggerSample', -1);
set(sc, 'TriggerMode', 'Scope');
sc(1).TriggerScope = 2;

1

% Initialize time and data log.

t =11

data = zeros(0, 2);

sc(2).TriggerScope

% Start the scopes and the model.
start(sc);
start(tg);
% Start things off by triggering scope 1.
scNum = 1;
sc(scNum).trigger;
% Use the two scopes as a double buffer to log the data.
while (1)
% Wait until this scope has finished acquiring 500 samples
% or the model stops (scope is interrupted).
while ~(strcmp(sc(scNum).Status, 'Finished') ||
strcmp(sc(scNum).Status, 'Interrupted')), end
% Stop buffering data when the model stops.
if strcmp(tg.Status, 'stopped')
break
end
% Save the data.
t(end + 1 : end + 500) sc(scNum).Time;
data(end + 1 : end + 500, :) = sc(scNum).Data;
% Restart this scope.

start(sc(scNum));
% Switch to the next scope.
scNum = 3 - scNum;
end
% Remove the scopes we added.
remscope(tg,[1 2]);
% Plot the data.
plot(t,data); grid on; legend('Signal 0','Signal 1');

7-31

7 Targets and Scopes in the MATLAB® Interface

7-32

Logging Signal Data with
FTP and File System

Objects

¢ “File Systems” on page 8-2

e “FTP and File System Objects” on page 8-4
e “Using xpctarget.ftp Objects” on page 8-5

¢ “Using xpctarget.fs Objects” on page 8-10

8 Logging Signal Data with FTP and File System Objects

File Systems

xPC Target file scopes create files on the target computer. To work with these
files from the host computer, you need to work with the xpctarget.ftp and
xpctarget.fs objects. The xpctarget.ftp object allows you to perform basic
file transfer operations on the target computer file system. The xpctarget.fs
object allows you to perform file system-like operations on the target computer
file system.

You cannot direct the scope to write the data to a file on the xPC Target
host computer. Once the software has written the signal data file to the
target computer, you can access the contents of the file for plotting or other
inspection from the host computer. The software can write data files to

e The C:\ or D:\ drive of the target computer. This can be a serial ATA
(SATA) or parallel ATA (PATA)/Integrated Device Electronics (IDE) drive.
The xPC Target software supports file systems of type FAT-12, FAT-16, or
FAT-32. Verify that the hard drive is not cable-selected and that the BIOS
can detect it. The type of file system (FAT-12, FAT-16, or FAT-32) limits
the maximum size of the file. The target computer file system uses the 8.3
file name convention. This means that a target computer file name cannot
exceed eight characters. Its file extension cannot exceed 3 characters.

If you have a target computer with multiple partitions on a hard drive,
the xPC Target software file scope can access those partitions if they are
formatted with FAT-12, FAT-16, or FAT-32. It will ignore unsupported
file systems.

e A 3.5-inch disk drive.

® Disks connected to a secondary IDE controller. The software supports up to
four drives through the second IDE controller. By default, it works with
drives configured as the primary master. If you want to use a secondary
IDE controller, you must configure the xPC Target software for it (see
“Converting xPC Target File Format Content to Double Precision Data”
on page 8-14). The software searches for another drive in the first four
ports of the target computer.

The largest single file that you can create is 4 GB.

File Systems

Note that writing data files to 3.5-inch disk drives is considerably slower
than writing to hard drives.

You can access signal data files, or other target computer system files, in one
of the following ways:

If you are running the target computer as a standalone system, you can
access that file by rebooting the target computer under an operating system
such as DOS and accessing the file through the operating system utilities.

If you are running the target computer in conjunction with a host
computer, you can access the target computer file from the host computer
by representing that file as an xpctarget.ftp object. Through the
MATLAB interface, use xpctarget.ftp methods on that FTP object. The
xpctarget.ftp object methods are file transfer operations such as get
and put.

If you are running the target computer in conjunction with a host
computer, you can access the target computer file from the host computer
by representing the target computer file system as an xpctarget.fs object.
Through the MATLAB interface, use the xpctarget.fs methods on the file
system and perform file system-like methods such as fopen and fread

on the signal data file. These methods work like the MATLAB file I/0
methods. The xpctarget.fs methods also include file system utilities
that allow you to collect target computer file system information for the
disk and disk buffers.

This topic describes procedures on how to use the xpctarget.ftp and
xpctarget.fs methods for common operations.

Note This topic focuses primarily on working with the target computer data
files that you generate from an xPC Target scope object of type file.

For an example of how to perform data logging with file scopes, see Data
Logging With a File Scope.

8-3

8 Logging Signal Data with FTP and File System Objects

FTP and File System Objects

The xPC Target software uses two objects, xpctarget.ftp and xpctarget.fs
(file system), to work with files on a target computer. You use the
xpctarget.ftp object to perform file transfer operations between the host
and target computer. You use the xpctarget.fs object to access the target
computer file system. For example, you can use an xpctarget.fs object to
open, read, and close a signal data file created by an xPC Target file scope.

Note This feature provides FTP-like commands, such as get and put.
However, it is not a standard FTP implementation. For example, the software
does not support the use of a standard FTP client.

To create an xpctarget.ftp object, use the FTP object constructor function
xpctarget.ftp. In the MATLAB Command Window, type

f = xpctarget.ftp

The xPC Target software uses a file system object on the host computer to
represent the target computer file system. You use file system objects to work
with that file system from the host computer.

To create an xpctarget.fs object, use the FTP object constructor function
xpctarget.fs. In the MATLAB window, type

f = xpctarget.fs

Both xpctarget.ftp and xpctarget.fs belong to the xpctarget.fsbase
object. This object encompasses the methods common to xpctarget.ftp
and xpctarget.fs. You can call the xpctarget.fsbase methods for both
xpctarget.ftp and xpctarget.fs objects. The xPC Target software creates
the xpctarget.fsbase object when you create either an xpctarget.ftp or
xpctarget.fs object. You enter xpctarget.fsbase object methods in the
MATLAB Command Window on the host computer or use MATLAB code
scripts.

Using xpctarget.fip Objects

Using xpctarget.ftp Objects

In this section...

“Overview” on page 8-5

“Accessing Files on a Specific Target Computer” on page 8-6

“Listing the

“Retrieving a File from the Target Computer to the Host Computer” on

page 8-8

“Copying a File from the Host Computer to the Target Computer” on page

8-8

Contents of the Target Computer Folder” on page 8-7

Overview

The xpctarget.ftp object enables you to work with files on the target
computer, including the data file that you generate from an xPC Target scope
object of type file. You enter target object methods in the MATLAB window
on the host computer or use scripts. The xpctarget.ftp object has methods
that allow you to use

e xpctarget

xpctarget
xpctarget
xpctarget
xpctarget
xpctarget

.fsbase.cd to change folders

.fsbase.dir to list the contents of the current folder
.fsbase.mkdir to make a folder

.fsbase.pwd to get the current working folder path
.fsbase.rmdir to remove a folder

.ftp.get (ftp) to retrieve a file from the target computer to

the host computer

xpctarget
computer

.ftp.put to place a file from the host computer to the target

The procedures in this section assume that the target computer has a signal
data file created by an xPC Target file scope. This file has the pathname
C:\data.dat. See “Configure Host Scope (xPC) Blocks” on page 5-27 for
additional details.

8 Logging Signal Data with FTP and File System Objects

The xPC Target software also provides methods that allow you to perform file
system-type operations, such as opening and reading files. For a complete list
of these methods, see “Using xpctarget.fs Objects” on page 8-10.

Accessing Files on a Specific Target Computer

You can access specific target computer files from the host computer for the
xpctarget.ftp object.

Use the xpctarget. ftp creator function. If your system has multiple targets,
you can access specific target computer files from the host computer for the
xpctarget.ftp object.

For example, to list the name of the current folder of a target computer
through a TCP/IP connection,

1 In the MATLAB Command Window, type a command like the following to
assign the xpctarget.ftp object to a variable.

f=xpctarget.ftp('TCPIP','192.168.0.10','22222");
2 Type
f.pwd;

Alternatively, you can use the xpctarget.xpc constructor to first construct a
target object, then use that target object as an argument to xpctarget.ftp.

1 In the MATLAB window, type a command like the following to assign the
xpctarget.xpc object to a variable.

tgi=xpctarget.xpc('TCPIP','192.168.0.10",'22222");

2 Type the following command to assign the xpctarget.ftp object to the
tg1 target object variable.

f=xpctarget.ftp(tgl);

Alternatively, if you want to work with the files of the default target computer,
you can use the xpctarget.ftp constructor without arguments.

8-6

Using xpctarget.fip Objects

In the MATLAB window, type a command like the following to assign the
xpctarget.ftp object to a variable.

f=xpctarget.ftp;

The xPC Target software assigns the f variable to the default target computer.

Listing the Contents of the Target Computer Folder

You can list the contents of the target computer folder by using xPC Target
methods on the host computer for the xpctarget.ftp object. Use the method
syntax to run an xpctarget.ftp object method:

method_name (ftp_object)

Note You must use the dir(f) syntax to list the contents of the folder. To
get the results in an M-by-1 structure, use a syntax like y=dir(f). See the
xpctarget.fsbase.dir method reference for further details.

For example, to list the contents of the C:\ drive,

1 In the MATLAB window, type the following to assign the xpctarget.ftp
object to a variable:

f=xpctarget.ftp;
2 Type
f.pwd

This gets the current folder. You get a result like the following:

ans =
C:\

3 Type the following to list the contents of this folder:

dir(f)

8 Logging Signal Data with FTP and File System Objects

Retrieving a File from the Target Computer to the
Host Computer

You can retrieve a copy of a data file from the target computer by using xPC
Target methods on the host computer for the xpctarget.ftp object.

Use the method syntax to run an xpctarget.ftp object method. The syntax
method_name (ftp_object, argument list) can be replaced with

ftp_object.method_name(argument_list)

For example, to retrieve a file named data.dat from the target computer
C:\ drive (default),

1 If you have not already done so, in the MATLAB window, type the following
to assign the xpctarget.ftp object to a variable.

f=xpctarget.ftp;
2 Type
f.get('data.dat');

This retrieves the file and saves that file to the variable data. This content
1s in the xPC Target file format.

Copying a File from the Host Computer to the Target
Computer

You can place a copy of a file from the host computer by using xPC Target
methods on the host computer for the xpctarget.ftp object.

Use the method syntax to run an xpctarget.ftp object method. The syntax
method_name (ftp_object, argument_list) can be replaced with

ftp_object.method_name(argument_list)

For example, to copy a file named data2.dat from the host computer to the
target computer C:\ drive (default),

1 If you have not already done so, in the MATLAB window, type the following
to assign the xpctarget.ftp object to a variable.

Using xpctarget.fip Objects

f=xpctarget.ftp;

2 Type the following to save that file to the variable data.

f.put('data2.dat');

8 Logging Signal Data with FTP and File System Objects

8-10

Using xpctarget.fs Objects

In this section...

“Overview” on page 8-10
“Accessing File Systems from a Specific Target Computer” on page 8-11

“Retrieving the Contents of a File from the Target Computer to the Host
Computer” on page 8-12

“Removing a File from the Target Computer” on page 8-15
“Getting a List of Open Files on the Target Computer” on page 8-16
“Getting Information about a File on the Target Computer” on page 8-17

“Getting Information about a Disk on the Target Computer” on page 8-18

Overview

The fs object enables you to work with the target computer file system from
the host computer. You enter target object methods in the MATLAB window
on the host computer or use scripts. The fs object has methods that allow
you to use

® xpctarget.fsbase.cd to change folders

® xpctarget.fsbase.dir to list the contents of the current folder

® xpctarget.fsbase.mkdir to make a folder

® xpctarget.fsbase.pwd to get the current working folder path

® xpctarget.fsbase.rmdir to remove a folder

® xpctarget.fs.diskinfo to get information about the specified disk

® xpctarget.fs.fclose to close a file (similar to MATLAB fclose)

® xpctarget.fs.fileinfo to get information about a particular file

e xpctarget.fs.filetable to get information about files in the file system
® xpctarget.fs.fopen to open a file (similar to MATLAB fopen)

® xpctarget.fs.fread to read a file (similar to MATLAB fread)

Using xpctarget.fs Objects

® xpctarget.fs.fwrite to write a file (similar to MATLAB fwrite)
® xpctarget.fs.getfilesize to get the size of a file in bytes

® xpctarget.fs.removefile to remove a file from the target computer
Useful global utility:
® readxpcfile, to interpret the raw data from the fread method

The procedures in this section assume that the target computer has a signal
data file created by an xPC Target file scope. This file has the pathname
C:\data.dat

The xPC Target software also provides methods that allow you to perform
file transfer operations, such as putting files on and getting files from a
target computer. For a description of these methods, see “Using xpctarget.ftp
Objects” on page 8-5.

Accessing File Systems from a Specific Target
Computer

You can access specific target computer files from the host computer for the
xpctarget.fs object.

Use the xpctarget.fs creator function. If your system has multiple targets,
you can access specific target computer files from the host computer for the
xpctarget.fs object.

For example, to list the name of the current folder of a target computer
through a TCP/IP connection,

1 In the MATLAB window, type a command like the following to assign the
xpctarget.fs object to a variable.

fsys=xpctarget.fs('TCPIP','192.168.0.10"', '22222");

2 Type

fsys.dir;

8-11

8 Logging Signal Data with FTP and File System Objects

Alternatively, you can use the xpctarget.xpc constructor to first construct a
target object, then use that target object as an argument to xpctarget.fs.

1 In the MATLAB window, type a command like the following to assign the
xpctarget.xpc object to a variable.

tgi=xpctarget.xpc('TCPIP','192.168.0.10','22222");

2 Type the following command to assign the xpctarget.fs object to the tg1
target object variable.

fs=xpctarget.fs(tgl);

Alternatively, if you want to work with the file system of the default target
computer, you can use the xpctarget.fs constructor without arguments.

1 In the MATLAB window, type a command like the following to assign the
xpctarget.fs object to a variable.

fsys=xpctarget.fs;

The xPC Target software assigns the fsys variable to the default target
computer.

2 Type
fsys.dir;
Retrieving the Contents of a File from the Target

Computer to the Host Computer

You can retrieve the contents of a data file from the target computer by using
xPC Target methods on the host computer for the xpctarget.fs object. This
is an alternate method to “Configure File Scopes Using MATLAB Language”
on page 5-106.

Use the method syntax to run an xpctarget.fs object method. The syntax
method_name(fs_object, argument_list) can be replaced with

fs_object.method _name(argument_list)

8-12

Using xpctarget.fs Objects

For example, to retrieve the contents of a file named data.dat from the target
computer C:\ drive (default),

1 If you have not already done so, in the MATLAB window, type the following
to assign the xpctarget.fs object to a variable.

fsys=xpctarget.fs;

2 Type

h=fsys.fopen('data.dat');

or

h=fopen(fsys, 'data.dat');

This opens the file data.dat for reading and assigns the file identifier to h.
3 Type

data2=fsys.fread(h);

or

data2=fread(fsys,h);

This reads the file data.dat and stores the contents of the file to data2.
This content is in the xPC Target file format.

4 Type
fsys.fclose(h);
This closes the file data.dat.
Before you can view or plot the contents of this file, you must convert the

contents. See “Converting xPC Target File Format Content to Double
Precision Data” on page 8-14.

8-13

8 Logging Signal Data with FTP and File System Objects

8-14

Converting xPC Target File Format Content to Double Precision
Data

The xPC Target software provides the script readxpcfile.m to convert xPC
Target file format content (in bytes) to double precision data representing the
signals and timestamps. The readxpcfile.m script takes in data from a file
in xPC Target format. The data must be a vector of bytes (uint8). To convert
the data to uint8, use a command like the following:

data2 = uint8(data2');

This section assumes that you have a variable, data2, that contains data in
the xPC Target file format (see “Retrieving the Contents of a File from the
Target Computer to the Host Computer” on page 8-12):

1 In the MATLAB window, change folder to the folder that contains the xPC
Target format file.

2 Type

new_data2=readxpcfile(data2);

The readxpcfile script converts the format of data2 from the xPC Target
file format to an array of bytes. It also creates a structure for that file

in new_data2, of which one of the elements is an array of doubles, data.
The data member is also appended with a time stamp vector. The data is
returned as doubles, which represent the real-world values of the original
Simulink signals at the specified times during target execution.

You can view or examine the signal data. You can also plot the data with
plot(new_data2.data).

If you are using the xPC Target software in StandAlone mode, you can extract
the data from the data file if you know the number of signals in the scope
and file header size. If you know these numbers, you can extract the data.
Note the following:

® First determine the file header size. To obtain the file header size, ignore
the first eight bytes of the file. The next four bytes store the header size as
an unsigned integer.

Using xpctarget.fs Objects

® After the header size number of bytes, the file stores the signals
sequentially as doubles. For example, assume the scope has three signals,
X, ¥, and z. Assume that x[0] is the value of x at sample 0, x[1] 1s the
value at sample 1, and so forth, and t[0], t[1] are the simulation time
values at samples 0, 1, and so forth, respectively. The file saves the data
using the following pattern:

x[0] y[0] z[O] t[O] x[1] y[1] z[1] t[1] x[2] y[2] z[2] t[2]...
X[N] y[N] z[N] t[N]

N is the number of samples acquired. The file saves x, y, z, and t as doubles
at 8 bytes each.

Removing a File from the Target Computer

You can remove a file from the target computer by using xPC Target methods
on the host computer for the xpctarget.ftp object. If you have not already
done so, close this file first with fclose.

Use the method syntax to run an xpctarget.fs object method. The syntax
method_name (fs_object, argument_list) can be replaced with

fs_object.method_name(argument_list)

For example, to remove a file named data2.dat from the target computer
C:\ drive (default),

1 If you have not already done so, in the MATLAB window, type the following
to assign the xpctarget.fs object to a variable.

fsys=xpctarget.fs;

2 Type the following to remove the specified file from the target computer.

fsys.removefile('data2.dat');

or

removefile(fsys, 'data2.dat');

8-15

8 Logging Signal Data with FTP and File System Objects

8-16

Getting a List of Open Files on the Target Computer

You can get a list of open files on the target computer file system from the
host computer by using xPC Target methods on the host computer for the
xpctarget.fs object. Do this to identify files you can close. The target

computer file system limits the number of open files you can have to eight.

Use the method syntax to run an xpctarget.fs object method. The syntax
method_name(fs_object, argument_list) can be replaced with

fs_object.method _name(argument_list)
For example, to get a list of open files for the file system object fsys,

1 If you have not already done so, in the MATLAB window, type the following
to assign the xpctarget.fs object to a variable.

fsys=xpctarget.fs;

2 Type

fsys.filetable

If the file system has open files, a list like the following is displayed:

ans =

Index Handle Flags FilePos Name
0 00060000 R__ 8512 C:\DATA.DAT
1 00080001 R__ 0 C:\DATA1.DAT
2 000A0002 R__ 8512 C:\DATA2.DAT
3 000C0003 R__ 8512 C:\DATA3.DAT
4 O001E0001 R 0 C:\DATA4.DA

3 The table returns the open file handles in hexadecimal. To convert a handle
to one that other xpctarget.fs methods, such as fclose, can use, use
the hex2dec function. For example,

h1 = hex2dec('001E0001"))
h1 =
1966081

Using xpctarget.fs Objects

4 To close that file, use the xpctarget.fs fclose method. For example,
fsys.fclose(h1);

Getting Information about a File on the Target

Computer

You can display information for a file on the target computer file system from
the host computer by using xPC Target methods on the host computer for the
xpctarget.fs object.

Use the method syntax to run an xpctarget.fs object method. The syntax
method_name(fs_object, argument_list) can be replaced with

fs_object.method_name(argument_list)

For example, to display the information for the file identifier fid1,

1 If you have not already done so, in the MATLAB window, type the following
to assign the xpctarget.fs object to a variable.

fsys=xpctarget.fs;
2 Type
fid1=fsys.fopen('data.dat');

This opens the file data.dat for reading and assigns the file identifier
to fid1.

3 Type
fsys.fileinfo(fid1);

This returns disk information like the following for the C:\ drive file
system.

ans =
FilePos: 0
AllocatedSize: 12288
ClusterChains: 1
VolumeSerialNumber: 1.0450e+009
FullName: 'C:\DATA.DAT'

8-17

8 Logging Signal Data with FTP and File System Objects

8-18

Getting Information about a Disk on the Target
Computer

You can display information for a disk on the target computer file system
from the host computer by using xPC Target methods on the host computer
for the xpctarget.fs object.

Use the method syntax to run an xpctarget.fs object method. The syntax
method_name (fs_object, argument_list) can be replaced with

fs_object.method_name(argument_list)

For example, to display the disk information for the C:\ drive,

1 If you have not already done so, in the MATLAB window, type the following
to assign the xpctarget.fs object to a variable.

fsys=xpctarget.fs;
2 Type
fsys.diskinfo('C:\"');

This returns disk information like the following for the C:\ drive file
system.

ans =
Label: 'SYSTEM '
DriveLetter: 'C'
Reserved: ''
SerialNumber: 1.0294e+009
FirstPhysicalSector: 63
FATType: 32
FATCount: 2
MaxDirEntries: 0
BytesPerSector: 512
SectorsPerCluster: 4
TotalClusters: 2040293
BadClusters: 0
FreeClusters: 1007937
Files: 19968
FileChains: 22480

Using xpctarget.fs Objects

FreeChains: 1300
LargestFreeChain: 64349

8-19

8 Logging Signal Data with FTP and File System Objects

8-20

Execution Using Graphical
User Interface Models

You can use the Simulink interface to create a custom graphical user interface
(GUI) for your xPC Target application. To do this, create an user interface
model with the Simulink interface and add-on products like Simulink 3D
Animation™ or Altia® Design (a third-party product).

Q Exccution Using Graphical User Interface Models

xPC Target Interface Blocks to Simulink Models

In this section...

“Simulink User Interface Model” on page 9-2
“Creating a Custom Graphical Interface” on page 9-3
“To xPC Target Block” on page 9-4

“From xPC Target Block” on page 9-5

“Creating a Target Application Model” on page 9-5
“Marking Block Parameters” on page 9-6

“Marking Block Signals” on page 9-8

Simulink User Interface Model

A user interface model is a Simulink model containing Simulink blocks from
add-on products and interface blocks from the xPC Target block library.

This user interface model can connect to a custom graphical interface using
Simulink 3D Animation or Altia products. The user interface model runs on
the host computer and communicates with your target application running on
the target computer using To xPC Target and From xPC Target blocks.

The user interface allows you to change parameters by downloading them to
the target computer, and to visualize signals by uploading data to the host
computer.

Simulink 3D Animation — The Simulink 3D Animation product enables

you to display a Simulink user interface model in 3-D. It provides Simulink
blocks that communicate with xPC Target interface blocks. These blocks then
communicate to a graphical interface. This graphical interface is a Virtual
Reality Modeling Language (VRML) world displayed with a Web browser
using a VRML plug-in.

Altia Design — Altia also provides Simulink blocks that communicate with
xPC Target interface blocks. These blocks then communicate with Altia’s
graphical interface or with a Web browser using the Altia ProtoPlay plug-in.

xPC Target™ Interface Blocks to Simulink® Models

Host PC Target FC
User interface
*PC Target L———
blocks interface FParameters
blocks e
%,
Signals
Simulink ¥*PC Target
instrumentation application

mod el

Creating a Custom Graphical Interface

The xPC Target block library provides Simulink interface blocks to connect
graphical interface elements to your target application. The steps for creating
your own custom user interface are listed below:

1 In the Simulink target application model, decide which block parameters
and block signals you want to have access to through graphical interface
control devices and graphical interface display devices.

2 Tag the block parameters in the Simulink model that you want to be
connected to a control device. See “Marking Block Parameters” on page 9-6.

3 Tag the signals in Simulink model that you want to be connected to a
display device. See “Marking Block Signals” on page 9-8.

4 In the MATLAB interface, run the function xpcsliface('model name') to
create the user interface template model. This function generates a new
Simulink model containing only the xPC Target interface blocks (To xPC
Target and From xPC Target) defined by the tagged block parameters and
block signals in the target application model.

5 To the user interface template model, add Simulink interface blocks from
add-on products (Simulink 3D Animation, Altia Design).

Q Exccution Using Graphical User Interface Models

® You can connect Altia blocks to the xPC Target To PC Target interface
blocks. To xPC Target blocks on the left should be connected to control
devices.

® You can connect Altia and Simulink 3D Animation blocks to the xPC
Target From PC Target interface blocks. From xPC Target blocks on the
right should be connected to the display devices.

You can position these blocks to your liking.

6 Start both the xPC Target application and the Simulink user interface
model that represents the xPC Target application.

To xPC Target Block

This block behaves as a sink and usually receives its input data from a
control device. The purpose of this block is to write a new value to a specific
parameter on the target application.

Host PC Target PC
Control device ToxPC Target || \
[block ’ { block }
Simulink instrumentation model xPC Target application

This block is implemented as a MATLAB S-function. The block is optimized
so that it only changes a parameter on the target application when the input
value differs from the value that existed at the last time step. This block
uses the parameter downloading feature of the xPC Target command-line
interface. This block is available from the xpclib/Misc block sublibrary. See
To xPC Target for further configuration details.

Note The use of To xPC Target blocks requires a connection between the
host and target computer. Operations such as opening a model that contains
these blocks or copying these blocks within or between models will take
significantly longer than normal without a connection between the host and
target computers.

xPC Target™ Interface Blocks to Simulink® Models

From xPC Target Block

This block behaves like a source and its output is usually connected to the

input of a display device.

Host PC

Target PC

Display device From xPC Targe
block block

)

‘—

Simulink instrumentation model

Because only one numerical value per signal is uploaded during a time

step, the number of samples of a scope object is set to 1. The block uses the
capability of the xPC Target command-line interface and is implemented as a
MATLAB S-function. This block is available from the xpclib/Misc sublibrary.

xPC Tamget application

See From xPC Target for further configuration details.

Note The use of From xPC Target blocks requires a connection between
the host and target computers. Operations such as opening a model that
contains these blocks or copying these blocks within or between models will
take significantly longer than normal without a connection between the host

and target computers.

Creating a Target Application Model

A target application model is a Simulink model that describes your physical
system, a controller, and its behavior. You use this model to create a real-time
target application, and you use this model to select the parameters and

signals you want to connect to a custom graphical interface.

Creating a target application model is the first step you need to do before you
can tag block parameters and block signals for creating a custom graphical

interface.

See “Marking Block Parameters” on page 9-6 and “Marking Block Signals” on
page 9-8 for descriptions of how to mark block properties and block signals.

9-5

Q Exccution Using Graphical User Interface Models

9-6

Marking Block Parameters

Tagging parameters in your Simulink model allows the function xpcsliface
to create To xPC Target interface blocks. These interface blocks contain the
parameters you connect to control devices in your user interface model.

After you create a Simulink model, you can mark the block parameters. This
procedure uses the model xpctank as an example.

Tip The xpctank model blocks and signals may contain placeholder tags
illustrating the syntax. As you create your own copy of the model using these
procedures, replace these tags with your new tags or add the new tags using
the multiple label syntax.

1 Open a Simulink model. For example, in the MATLAB Command Window,
type

Xpctank
2 Point to a Simulink block, and then right-click.
3 From the menu, click Properties.

A Block Properties dialog box opens.

4 In the Description box, delete the existing tag and enter a tag to the
parameters for this block.

For example, the SetPoint block is a constant with a single parameter that
selects the level of water in the tank. Enter the tag:

xPCTag(1)=water_level;

The tag has the following syntax

xPCTag(1, . . . index_n)= label 1 . . . label n;

For single dimension ports, the following syntax is also valid:

xPCTag=1abel;

xPC Target™ Interface Blocks to Simulink® Models

index_n -- Index of a block parameter. Begin numbering parameters
with an index of 1.

label n -- Name for a block parameter that will be connected to a To
xPC Target block in the user interface model. Separate the labels with a
space, not a comma.

label_1...label_n must consist of the same identifiers as those used by
C/C++ to name functions, variables, and so forth. Do not use names like
-foo.

5 Repeat steps 1 through 3 for the remaining parameters you want to tag.
For example, for the Controller block, enter the tag:

xPCTag(1,2,3)=upper_water_level lower_water_level
pump_flowrate;

For the PumpSwitch and ValveSwitch blocks, enter the following tags
respectively:

xPCTag(2)=pump_switch;
xPCTag(1)=drain_valve;

To create the To xPC blocks in an user interface model for a block with four
properties, use the following syntax:

xPCTag(1,2,3,4)=1abel_1label 2label 3label_4;

To create the To xPC blocks for the second and fourth properties in a block
with at least four properties, use the following syntax:

xPCTag(2,4)=1abel_1 label 2;

6 From the File menu, click Save as. Enter a filename for your model. For
example, enter

xpctanki
You next task is to mark block signals if you have not already done so, and

then create the user interface template model. See “Marking Block Signals”
on page 9-8 and “Creating a Custom Graphical Interface” on page 9-3.

9-7

Q Exccution Using Graphical User Interface Models

9-8

Marking Block Signals

Tagging signals in your Simulink model allows the function xpcsliface to
create From xPC Target interface blocks. These interface blocks contain the
signals you connect to display devices in your user interface model.

After you create a Simulink model, you can mark the block signals. This
procedure uses the model xpctank1 (or xpctank) as an example. See
“Creating a Target Application Model” on page 9-5.

Tip The xpctank model blocks and signals may contain placeholder tags
illustrating the syntax. As you create your own copy of the model using these
procedures, replace these tags with your new tags or add the new tags using
the multiple label syntax.

Note that you cannot select signals on the output ports of virtual blocks,
such as Subsystem and Mux blocks. Also, you cannot select signals on
software-triggered signal output ports.

1 Open a Simulink model. For example, in the MATLAB Command Window,
type:

xpctank
or

xpctanki

2 Point to a Simulink signal line, and then right-click.
3 From the menu, click Properties.

A Signal Properties dialog box opens.
4 Select the Documentation tab.

5 In the Description box, enter a tag to the signals for this line.

xPC Target™ Interface Blocks to Simulink® Models

For example, the block labeled TankLevel is an integrator with a single
signal that indicates the level of water in the tank. Replace the existing
tag with the tag:

xPCTag(1)=water_level;

The tag has the following format syntax:

xPCTag(1, . . . index_n)=label 1 . . . label n;

For single dimension ports, the following syntax is also valid:

XPCTag=label:
¢ index_n— Index of a signal within a vector signal line. Begin numbering
signals with an index of 1.

® label n — Name for a signal that will be connected to a From xPC
Target block in the user interface model. Separate the labels with a
space, not a comma.

label 1...label_n must consist of the same identifiers as those used by
C/C++ to name functions, variables, and so forth. Do not use names like
-foo.

To create the From xPC Target blocks in an user interface model for a
signal line with four signals (port dimension of 4), use the following syntax:

XPCTag(1,2,3,4)=label 1 label 2 label 3 label 4;

To create the From xPC Target blocks for the second and fourth signals in a
signal line with at least four signals, use the following syntax:

xPCTag(2,4)=1abel_1 label 2;

Note Only tag signals from nonvirtual blocks. Virtual blocks are only
graphical aids (see “Virtual Blocks”). For example, if your model combines
two signals into the inputs of a Mux block, do not tag the signal from the
output of the Mux block. Instead, tag the source signal from the output
of the originating nonvirtual block.

9-9

Q Exccution Using Graphical User Interface Models

9-10

6 From the File menu, click Save as. Enter a filename for your model. For
example, enter

xpc_tank1

You next task is to mark block parameters if you have not already done so.
See “Marking Block Parameters” on page 9-6. If you have already marked
block signals, return to “Creating a Custom Graphical Interface” on page 9-3
for additional guidance on creating a user interface template model.

Execution Using the Target
Computer Command Line

You can interact with the xPC Target environment through the target
computer command window. The xPC Target software provides a limited
set of commands that you can use to work with the target application after
it has been loaded to the target computer, and to interface with the scopes
for that application.

l 0 Execution Using the Target Computer Command Line

10-2

Target Computer Command-Line Interface

This interface is useful with standalone applications that are not connected to
the host computer. You can type commands directly from a keyboard on the
target computer. As you start to type at the keyboard, a command window
appears on the target computer screen.

For a complete list of target computer commands, refer to “Target Computer
Commands”

In this section...

“Using Target Application Methods on the Target Computer” on page 10-2

“Manipulating Target Object Properties from the Target Computer” on
page 10-3

“Manipulating Scope Objects from the Target Computer” on page 10-4

“Manipulating Scope Object Properties from the Target Computer” on page
10-6

“Aliasing with Variable Commands on the Target Computer” on page 10-6

Using Target Application Methods on the Target

Computer

The xPC Target software uses an object-oriented environment on the host
computer with methods and properties. While the target computer does
not use the same objects, many of the methods on the host computer have
equivalent target computer commands. The target computer commands are
case sensitive, but the arguments are not.

After you have created and downloaded a target application to the target
computer, you can use the target computer commands to run and test your
application:

1 On the target computer, press C.

The target computer command window 1s activated, and a command line
opens. If the command window is already activated, do not press C. In this
case, pressing C is taken as the first letter in a command.

Target Computer Command-Line Interface

2 In the Cmd box, type a target computer command. For example, to start
your target application, type

start

3 To stop the application, type

stop

Once the command window is active, you do not have to reactivate it before
typing the next command.

Manipulating Target Object Properties from the
Target Computer

The xPC Target software uses a target object to represent the target kernel
and your target application. This section shows some of the common tasks
that you use with target objects and their properties.

These commands create a temporary difference between the behavior of the
target application and the properties of the target object. The next time you
access the target object, the properties are updated from the target computer.

1 On the target computer keyboard, press C.
The target computer activates the command window.

2 Type a target command. For example, to change the frequency of the signal
generator (parameter 1) in the model xpcosc, type

setpar 1=30

The command window displays a message to indicate that the new
parameter has registered.

System: p[1] is set to 30.00000

3 Check the value of parameter 1. For example, type

p1

10-3

l 0 Execution Using the Target Computer Command Line

10-4

The command window displays a message to indicate that the new
parameter has registered.

System: p[1] is set to 30.00000

4 Check the value of signal 0. For example, type

sO

The command window displays a message to indicate that the new
parameter has registered.

System: SO has value 5.1851

5 Change the stop time. For example, to set the stop time to 1000, type

stoptime = 1000

The parameter changes are made to the target application but not to the
target object. When you type an xPC Target command in the MATLAB
Command Window, the target computer returns the current properties
of the target object.

Note The target computer command setpar does not work for vector
parameters.

To see the correlation between a parameter or signal index and its block, you
can look at the model name_pt.c or model name bio.c of the generated code
for your target application.

Manipulating Scope Objects from the Target
Computer

The xPC Target software uses a scope object to represent your target scope.
This section shows some of the common tasks that you use with scope objects.

These commands create a temporary difference between the behavior of the
target application and scope object. The next time you access the scope object,
the data is updated from the target computer.

Target Computer Command-Line Interface

1 On the target computer keyboard, press C.
The target computer activates the command window.

2 Type a scope command. For example, to add a target scope (scope 2) in the
model xpcosc, type

addscope 2

The xPC Target software adds another scope monitor to the target
computer screen. The command window displays a message to indicate
that the new scope has registered.

Scope: 2, created, type is target SO

3 Type a scope command. For example, to add a signal (0) to the new scope,
type

addsignal 2=0

The command window displays a message to indicate that the new
parameter has registered.

Scope: 2, signal 0 added

You can add more signals to the scope.
4 Type a scope command. For example, to start the scope 2, type

startscope 2

The target scope 2 starts and displays the signals you added in the previous
step.

Note If you add a target scope from the target computer, you need to start
that scope manually. If a target scope is in the model, starting the target
application starts that scope automatically.

10-5

l 0 Execution Using the Target Computer Command Line

10-6

Manipulating Scope Object Properties from the
Target Computer

This section shows some of the common tasks that you use with target objects
and their properties.

These commands create a temporary difference between the behavior of the
target application and the properties of the target object. The next time you
access the target object, the properties are updated from the target computer.

1 On the target computer keyboard, press C.
The target computer activates the command window.

2 Type a scope property command. For example, to change the number of
samples (1000) to acquire in scope 2 of the model xpcosc, type

numsamples 2=1000

3 Type a scope property command. For example, to change the scope mode
(numerical) of scope 2 of the model xpcosc, type

scopemode 2=numerical

The target scope 2 display changes to a numerical one.

Aliasing with Variable Commands on the Target
Computer

Use variables to tag (or alias) unfamiliar commands, parameter indices, and
signal indexes with more descriptive names.

After you have created and downloaded a target application to the target
computer, you can create target computer variables.

1 On the target computer keyboard, type a variable command. For example,
if you have a parameter that controls a motor, you could create the
variables on and off by typing

setvar on = p7 = 1
setvar off = p7 =0

Target Computer Command-Line Interface

The target computer command window is activated when you start to type,
and a command line opens.

2 Type the variable name to run that command sequence. For example, to
turn the motor on, type

on

The parameter P7 is changed to 1, and the motor turns on.

10-7

l 0 Execution Using the Target Computer Command Line

10-8

Execution Using the Web
Browser Interface

11 Execution Using the Web Browser Interface

Web Browser Interface

In this section...

“Introduction” on page 11-2

“Connecting the Web Interface Through TCP/IP” on page 11-2
“Connecting the Web Interface Through RS-232” on page 11-3
“Using the Main Pane” on page 11-6

“Changing WWW Properties” on page 11-9

“Viewing Signals with a Web Browser” on page 11-9

“Viewing Parameters with a Web Browser” on page 11-10

“Changing Access Levels to the Web Browser” on page 11-11

Introduction

The xPC Target software has a Web server that allows you to interact with
your target application through a Web browser. You can access the Web
browser with either a TCP/IP or serial (RS-232) connection.

Note RS-232 Host-Target communication mode will be removed in a future
release. Use TCP/IP instead.

The xPC Target Web server is built into the kernel that allows you to interact
with your target application using a Web browser. If the target computer is
connected to a network, you can use a Web browser to interact with the target
application from a host computer connected to the network.

Connecting the Web Interface Through TCP/IP

If your host computer and target computer are connected with a network
cable, you can connect the target application on the target computer to a
Web browser on the host computer.

The TCP/IP stack on the xPC Target kernel supports only one simultaneous
connection, because its main objective is real-time applications. This

11-2

Web Browser Interface

connection is shared between the MATLAB interface and the Web browser.
You must close the other open connections to the target computer before you
connect using the host computer Web browser. This also means that only one
browser or the MATLAB interface is able to connect at one time.

Before you connect your Web browser on the host computer, you must load a
target application onto the target computer. The target application does not
have to be running, but it must be loaded. Also, your browser must have
JavaScript® and StyleSheets turned on.

Note Close the other connections to the target computer. For example, if you
are currently connected to the target computer through xPC Target Explorer,
right-click on that target computer icon and select Disconnect or click the

) . @
Disconnect icon @® on the toolbar.

1 In the MATLAB window, type

xpcwwwenable

The MATLAB interface is disconnected from the target computer, and the
connection is reset for connecting to another client. If you do not use this
command immediately before opening the Web interface, your browser
might not be able to connect to the target computer.

2 Open a Web browser. In the address box, enter the IP address and port
number you entered in the xPC Target Explorer window. For example, if
the target computer IP address 1s 192.168.0.10 and the port is 22222, type

http://192.168.0.10:22222/

The browser loads the xPC Target Web interface frame and panes.

Connecting the Web Interface Through RS-232

If the host computer and target computer are connected with a serial cable
instead of a network cable, you can still connect the target application on the
target computer to a Web browser on the host computer. The xPC Target
software includes a TCP/IP to RS-232 mapping application. This application
runs on the host computer and writes whatever it receives from the RS-232

11-3

11 Execution Using the Web Browser Interface

114

connection to a TCP/IP port, and it writes whatever is receives from the
TCP/TP port to the RS-232 connection. TCP/IP port numbers must be less
than 26 = 65536.

Before you connect your Web browser on the host computer, you must load a
target application onto the target computer. The target application does not
have to be running, but it must be loaded. Also, your Web browser must have
JavaScript and StyleSheets turned on.

1 In the MATLAB window, type

xpcwwwenable or close(xpc)

The MATLAB interface is disconnected from the target computer, leaving
the target computer ready to connect to another client. The TCP/IP stack of
the xPC Target kernel supports only one simultaneous connection. If you
do not use this command, the TCP/IP to RS-232 gateway might not be able
to connect to the target computer.

2 Open a DOS command window, and enter the command to start the TCP/IP
to RS-232 gateway. For example, if the target computer is connected to
COM1 and you would like to use the TCP/IP port 22222, type the following:

Cc:\<MATLAB root>\toolbox\rtw\targets\xpc\xpc\bin\xpctcp2ser
-v -t 22222 -c 1

For a description of the xpctep2ser command, see “Syntax for the xpctep2ser
Command” on page 11-5.

The TCP/IP to RS-232 gateway starts running, and the DOS command
window displays the message

K o o e m m m m m m mmm e mmmmmmm— - - *
* XPC Target TCP/IP to RS-232 gateway *
* Copyright 2000 The MathWorks *
* *

Connecting COM to TCP port 22222
Waiting to connect

If you did not close the MATLAB to target application connection,
xpxtcp2ser displays the message Could not initialize COM port.

Web Browser Interface

3 Open a Web browser. In the address box, enter

http://localhost:22222/
The Web browser loads the xPC Target Web interface panes.

4 Using the Web interface, start and stop the target application, add scopes,
add signals, and change parameters.

5 In the DOS command window, press Ctrl+C.

The TCP/TP to RS-232 Gateway stops running, and the DOS command
window displays the message

interrupt received, shutting down

The gateway application has a handler that responds to Ctrl+C by
disconnecting and shutting down cleanly. In this case, Ctrl+C is not used
to abort the application.

6 In the MATLAB Command Window, type
Xpc

The MATLAB interface reconnects to the target application and lists the
properties of the target object.

If you did not close the gateway application, the MATLAB window displays
the message

Error in ==>
C:\MATLABR13\toolbox\rtw\targets\xpc\xpc\@xpc\xpc.m
On line 31 ==> sync(xpcObj);

You must close the MATLAB interface and then restart it.

Syntax for the xpctcp2ser Command

The xpctcp2ser command starts the TCP/IP to RS-232 gateway. The syntax
for this command is

xpctcp2ser [-v] [-n] [-t tcpPort] [-C comPort]
xpctcp2ser -h

11-5

11 Execution Using the Web Browser Interface

The options are described in the following table.

Command-
Line Option Description

-V Verbose mode. Produces a line of output every time a
client connects or disconnects.

-n Allows nonlocal connections. By default, only clients
from the same computer that the gateway is running
on are allowed to connect. This option allows anybody
to connect to the gateway.

If you do not use this option, only the host computer
that is connected to the target computer with a serial
cable can connect to the selected port. For example,

if you start the gateway on your host computer, with
the default ports, you can type in the Web browser
http://localhost:2222. However, if you try to connect
to http://Domainname.com:22222, you will probably
get a connection error.

-t tcpPort Use TCP port tcpPort. Default t is 22222. For example,
to connect to port 20010, type -t 20010.

-h Print a help message.

-c comPort Use COM port comPort (1 <= comPort <= 4). Default is
1. For example, to use COM2, type -c 2.

Using the Main Pane

The Main pane is divided into four parts, one below the other. The four parts
are System Status, xPC Target Properties, Navigation, and WWW
Properties.

After you connect a Web browser to the target computer, you can use the
Main pane to control the target application:

1 In the left frame, click the Refresh button.

11-6

Web Browser Interface

System status information in the top cell is uploaded from the target
computer. If the right frame is either the Signals List pane or the Screen
Shot pane, updating the left frame also updates the right frame.

Click the Start Execution button.

The target application begins running on the target computer, the Status
line is changed from Stopped to Running, and the Start Execution
button text changes to Stop Execution.

Update the execution time and average task execution time (TET).
Click the Refresh button. To stop the target application, click the Stop
Execution button.

Enter new values in the StopTime and SampleTime boxes, then click
the Apply button. You can enter -1 or Inf in the StopTime box for an
infinite stop time.

The new property values are downloaded to the target application. Note
that the SampleTime box is visible only when the target application is
stopped. You cannot change the sample time while a target application is
running. (See “User Interaction” for limitations on changing sample times.)

Select scopes to view on the target computer. From the ViewMode list,
select one or all of the scopes to view.

11-7

11-8

11 Execution Using the Web Browser Interface

After entering values, the screen looks like this:

System Status
Application xpeose
Real Time
Mode o nole-Tasking
Status Stopped
CPUCwetload none

ExzecTime 0. 0
SessionTime 88641.1

StopTime 0. 2
SampleTime 0. 00025

1.04013e-
AygTET 005

‘ Start Execution |
Get State Log |
Get Output Log |
GetTET Log |

xPC Target Properties

Viewlhlode IAII 'l

SampleTime ID.DDDES
StopTime IIJ.2
Apply | Feset |
Navigation

Scopes |
Signals |

Refresh |
Fararmeters |

Screen Shot |

WWW Properties

Iammum Signal

=

Wit ™

Fefresh Interval———

Click any button on the left to navigate

Web Browser Interface

Note The ViewMode control is visible in the xPC Target Properties pane
only if you add two or more scopes to the target computer.

Changing WWW Properties

The WWW Properties cell in the left frame contains fields that control the
display on the Web interface itself, and not the application. There are two
fields: maximum signal width to display and refresh interval.

1 In the Maximum Signal Width box enter -1, Inf (show all signals), 1
(show only scalar signals), 2 (show scalar and vector signals less than or
equal to 2 wide), or n (show signals with a width less than or equal to n).

Signals with a width greater than the value you enter are not displayed
on the Signals pane.

2 In the Refresh Interval box, enter a value greater than 10. For example,
enter 20.

The signal pane updates automatically every 20 seconds. Entering -1 or
Inf does not automatically refresh the pane.

Sometimes, both the frames try to update simultaneously, or the auto refresh
starts before the previous load has finished. This problem can happen with
slow network connections. In this case, increase the refresh interval or
manually refresh the browser (set the Refresh Interval = Inf).

This can also happen when you are trying to update a parameter or property
at the same time that the pane is automatically refreshing.

Sometimes, when a race condition occurs, the browser becomes confused about
the format, and you might have to refresh it. This should not happen often.

Viewing Signals with a Web Browser
The Signals pane is a list of the signals in your model.

After you connect a Web browser to the target computer you can use the
Signals pane to view signal data:

11-9

11 Execution Using the Web Browser Interface

1 In the left frame, click the Signals button.

The Signals pane is loaded in the right frame with a list of signals and the
current values.

2 On the Signals pane in the right frame, click the Refresh button.

The Signals pane is updated with the current values. Vector/matrix
signals are expanded and indexed in the same column-major format that
the MATLAB interface uses. This can be changed by the Maximum
Signal Width value you enter in the left frame.

3 In the left frame, click the Screen Shot button.

The Screen Shot pane is loaded and a copy of the current target computer
screen is displayed. The screen shot uses the portable network graphics
(PNG) file format.

Viewing Parameters with a Web Browser

The Parameters pane displays the tunable parameters in your model. Row
and column indices for vector/matrix parameters are also shown.

After you connect a Web browser to the target computer, you can use the
Parameters pane to change parameters in your target application while it is
running in real time:

1 In the left frame, click the Parameters button.
The Parameter List pane is loaded into the right frame.

If the parameter is a scalar parameter, the current parameter value is
shown in a box that you can edit.

If the parameter is a vector or matrix, click the Edit button to view the
vector or matrix. You can edit the parameter in this pane.

2 In the Value box, enter a new parameter value, and then click the Apply
button.

11-10

Web Browser Interface

Changing Access Levels to the Web Browser

The Web browser interface allows you to set access levels to the target
application. The different levels limit access to the target application. The
highest level, 0, is the default level and allows full access. The lowest level, 4,
only allows signal monitoring and tracing with your target application.

1 In the Simulink window, click Simulation > Model Configuration
Parameters.

The Configuration Parameters dialog box for the model is displayed.
2 Click the Code Generation node.
The code generation pane opens.

3 In the Target selection section, access levels are set in the System
target file box. For example, to set the access level to 1, enter

xpctarget.tlc -axpcWWWAccessLevel=1

If you do not specify -axpcWWWAccessLevel, the highest access level (0) is
set.

4 Click OK.

The various fields disappear, depending on the access level. For example, if
your access level does not allow you access to the parameters, you do not see
the button for parameters.

There are various access levels for monitoring, which allow different levels
of hiding. The proposed setup is described below. Each level builds on
the previous one, so only the incremental hiding of each successive level is
described.

Level 0 — Full access to the panes and functions.

Level 1 — Cannot change the sample and stop times. Cannot change
parameters, but can view parameters.

Level 2 — Cannot start and stop execution of the target application or log
data.

11-11

11 Execution Using the Web Browser Interface

Level 3 — Cannot view parameters. Cannot add new scopes, but can edit
existing scopes.

Level 4 — Cannot edit existing scopes on the Scopes pane. Cannot add or

remove signals on the Scopes pane. Cannot view the Signals pane and the
Parameters pane, and cannot get scope data.

11-12

Troubleshooting

Refer to these guidelines, hints, and tips for questions

or issues you might have about your installation of the xPC

Target product. For more specific troubleshooting solutions,

go to the MathWorks® Support xPC Target Web site
(http://www.mathworks.com/support/search_results.html?g=product
for specific troubleshooting solutions.

Chapter 12,
Chapter 13,

Chapter 14,

Chapter 15,

Chapter 16,

Chapter 17,
Chapter 18,
Chapter 19,
Chapter 20,
Chapter 21,
Chapter 22,
Chapter 23,
Chapter 24,
Chapter 25,

(34

“Confidence Test Failures”
‘Host Computer Configuration”
“Target Computer Configuration”
‘Host-Target Communication”
“Target Computer Boot Process”
“Modeling”

“Model Compilation”
“Application Download”
“Application Execution”
“Application Parameters”
“Application Signals”
“Application Performance”

“Getting MathWorks Support”

:"XPC+T

http://www.mathworks.com/support/search_results.html?q=product:"xPC+Target"

12 Execution Using the Web Browser Interface

12-2

Troubleshooting Procedure

An xPC Target installation can sometimes fail. Causes include hardware
failures, changes in underlying system software, and procedural errors.
Follow this procedure to address these problems:

Run the confidence test (see “Run Confidence Test on Configuration”).

Tip Run the confidence test as the first step in troubleshooting, as well as in
validating your initial product installation and configuration.

If one or more tests fail, see the following information about the specific
failure:

e “Test 1: Ping Using System Ping” on page 13-2

e “Test 2: Ping Using xpctargetping” on page 13-5

e “Test 3: Reboot Target Computer” on page 13-7

e “Test 4: Build and Download xpcosc” on page 13-9

e “Test 5: Check Host-Target Communications” on page 13-12

e “Test 6: Download Prebuilt Target Application” on page 13-14

e “Test 7: Execute Target Application” on page 13-15

e “Test 8: Upload Data and Compare” on page 13-16

Check the categorized questions and answers for clues to the root cause of
the problem.

If the tests run, but task execution time is slow or the CPU overloads, see the
questions and answers for Application Performance.

Check the MathWorks Support web site and MATLAB Central for tips. See
“Where Is the MathWorks Support Web Site?” on page 25-2.

Call MathWorks Technical Support. See “How Do I Contact MathWorks
Technical Support?” on page 25-5.

Confidence Test Failures

This topic describes guidelines, hints, and tips for questions

or issues you might have while using the xPC Target

product. Refer to the MathWorks Support xPC Target Web site
(http://www.mathworks.com/support/search_results.html?qg=product:"xPC+Target")
for specific troubleshooting solutions. The xPC Target documentation is also
available from this site.

e “Test 1: Ping Using System Ping” on page 13-2

® “Test 2: Ping Using xpctargetping” on page 13-5

¢ “Test 3: Reboot Target Computer” on page 13-7

¢ “Test 4: Build and Download xpcosc” on page 13-9

e “Test 5: Check Host-Target Communications” on page 13-12

e “Test 6: Download Prebuilt Target Application” on page 13-14

e “Test 7: Execute Target Application” on page 13-15

¢ “Test 8: Upload Data and Compare” on page 13-16

http://www.mathworks.com/support/search_results.html?q=product:"xPC+Target"

1 3 Confidence Test Failures

Test 1: Ping Using System Ping

If you are using a network connection, this test is a standard system ping to
your target computer.

Note The confidence test skips test 1 for serial connections.

Troubleshoot failures with the following procedure:

1 Open a DOS shell and type the IP address of the target computer:

ping XXX.XXX.XXX.XXX

Check the messages on your screen.

If DOS displays a message similar to the following, system ping succeeds
even though test 1 fails.

Pinging xXxX.XXX.Xxx.xxx with 32 bytes of data:
Reply from XxXX.XXX.XXX.XXX: bytes-32 time<10 ms TTL=59

If the DOS shell displays the following message, the system ping command
failed.

Pinging xxX.Xxxx.xXxx.xxx with 32 byte of data:
Request timed out.

2 Ping succeeds — Ethernet addresses OK?

If ping succeeds, check whether you entered the required IP and gateway
addresses in xPC Target Explorer:

a Type xpcexplr in the MATLAB Command Window.

b In the Targets pane, expand the target computer node.

¢ Click the Target Properties icon % in the toolbar or double-click
Properties.

d Select Host-to-Target communication.

13-2

Test 1: Ping Using System Ping

e Verify that IP address, Subnet mask, and Gateway boxes contain
the required values.

f Select Boot configuration.
g Click Create boot disk.
h Reboot the target computer with the new kernel.

Ping fails — Cables OK?

If ping fails, first check your network cables. You might have a faulty
network cable or, if you are using a coaxial cable, the terminators might
be missing.

Ping fails — xPC Target properties OK?

Check that you have entered the required properties in xPC Target
Explorer:

a Type xpcexplr in the MATLAB Command Window.

b In the Targets pane, expand the target computer node.

¢ Click the Target Properties icon ﬁ in the toolbar or double-click
Properties.

d Select Host-to-Target communication.

e Verify that IP address, Subnet mask, and Gateway boxes contain
the required values.

f Verify that the bus settings match those of the target computer:
¢ For a PCI computer: check that Bus type is set to PCI instead of ISA.
¢ For an ISA computer:
= Check that Bus type is set to ISA instead of PCI.

= Check that Address is set to the required I/O port base address and
that the address does not conflict with that of another hardware
resource.

= Check that IRQ is set to the required IRQ line and that the IRQ
line does not conflict with that of another hardware resource.

13-3

1 3 Confidence Test Failures

13-4

- If the target computer motherboard contains a PCI chip set, check
whether the target computer BIOS reserves the IRQ line used by
the ISA bus Ethernet card.

g Select Boot configuration.
h Click Create boot disk.

i Reboot the target computer with the new kernel.
5 Ping fails — Ethernet hardware operating?

Verify that your hardware is operating. For example, check that the green
“ready” light goes on when the cable is connected to the Ethernet card.

6 Ping fails — Ethernet card supported?

Verify that you are using a supported Ethernet card on the target
computer. See “Ethernet Communication Setup” for further details,
including supplied Ethernet cards.

7 Ping fails — Not a locally mounted folder?

Run xpctest from a locally mounted folder, such as Z: \work, rather than
from a UNC network folder, such as \\Server\user\work.

8 If these steps do not solve your problem, check the questions and answers
for Host-Target Communication and section “Faulty BIOS Settings on
Target Computer” on page 15-2.

9 If you still cannot solve your problem, see “How Do I Contact MathWorks
Technical Support?” on page 25-5.

Test 2: Ping Using xpctargetping

Test 2: Ping Using xpctargetping

This test is an xPC Target ping to your target computer. Troubleshoot failures
with the following procedure:

1 In the MATLAB Command Window, type
tg=xpctarget.xpc('argument-list')

where argument-1ist is the connection information that indicates which
target computer you are working with. If you do not specify arguments,
the software assumes that you are communicating with the default target
computer.

Check the messages in the MATLAB Command Window.

MATLAB should respond with the following messages:

XPC Object
Connected = Yes
Application = loader

2 Not connected — Bad target boot kernel?

If you do not get the preceding messages, you could have a bad target boot
kernel. To solve this problem, create a new target boot kernel and reboot
the target computer with the new kernel. See “Target Boot Methods”.

3 Not connected — Environment variables set?

Use the PC MATLAB command to check the environment variables, in
particular Target PC IP address. If test 1 passes but test 2 fails, you
might not have entered the required IP address.

4 Not connected — Ethernet card supported?

If you are using a TCP/IP connection, make sure you are using a supported
Ethernet card (see “Test 1: Ping Using System Ping” on page 13-2).

5 Not connected — RS-232 configuration?

If you are using an RS-232 connection, check the following:

13-5

1 3 Confidence Test Failures

e Verify that you are using a null modem cable (see “RS-232 Hardware”).

e Verify that the COM ports on the host and target computers are enabled
in the BIOS. If they are disabled, test 2 fails.

e Verify that the specified COM port is connected on each computer.

e Verify that the COM port being used matches the port specified in the
target computer configuration.

Note RS-232 host-target communication mode will be removed in a future
release. Use TCP/IP instead.

6 If these steps do not solve your problem, check the questions and answers
for Host-Target Communication and section “Faulty BIOS Settings on
Target Computer” on page 15-2.

7 If you still cannot solve your problem, see “How Do I Contact MathWorks
Technical Support?” on page 25-5.

13-6

Test 3: Reboot Target Computer

Test 3: Reboot Target Computer

This test tries to boot your target computer using an xPC Target command.

Note This procedure assumes that you have set environment settings with
xPC Target Explorer. See “RS-232 Communication Setup” or “Ethernet
Communication Setup”.

Troubleshoot failures with the following procedure:

1 In the MATLAB Command Window, type

xpctest('-noreboot')

This command reruns the test without using the xpctarget.xpc.reboot
command and displays the message

Test 3, Software reboot the target PC: ... SKIPPED

2 Build Succeeded — Software reboot supported?

Check the results of Test 4, Build and download an xPC

Target application using model xpcosc. If xpctest skips the
xpctarget.xpc.reboot command but builds and loads the target
application without producing an error message, the problem could be that
the target computer does not support the xPC Target reboot command. In
this case, you need to reboot using a hardware reset button.

3 Build Failed — Kernel not loaded?

If you saw the following error, the kernel might not be loaded when the
host computer initiates communication with the target computer.

ReadFile Error: 6

Older xPC Target releases might receive this error. As a workaround, run
xpctest with the noreboot option. For example,

xpctest('-noreboot')

13-7

1 3 Confidence Test Failures

This command runs the test without trying to reboot the target computer.
It displays the following message:

Test 3, Software reboot the target PC: ... SKIPPED

Build Failed — Example model modified?

If you directly or indirectly modify the xpcosc example model supplied with
the product, test 3 is likely to fail.

Note Do not modify the files installed with the xPC Target software. If
you want to modify one of these files, copy the file and modify the copy.

Restore the xpcosc example model to its original state by one of the
following methods:

® Recreate the original model by editing it in the following location:

matlabroot\toolbox\rtw\targets\xpc\xpcdemos

¢ Reinstall the software.

5 If these steps do not solve your problem, check the questions and answers

for-Target Computer Boot Process and section “Faulty BIOS Settings on
Target Computer” on page 15-2.

6 If you still cannot solve your problem, see “How Do I Contact MathWorks

13-8

Technical Support?” on page 25-5.

Test 4: Build and Download xpcosc

Test 4: Build and Download xpcosc

This test tries to build and download the model xpcosc. Troubleshoot failures
with the following procedure:

1 In the MATLAB Command Window, check the error messages.
These messages help you locate where there is a problem.

2 Build Failed — Loader not ready?
If you get the following error message, reboot your target computer:

xPC Target loader not ready

This error message is sometimes displayed even if the target screen shows
that the loader is ready.

3 Build Failed — Using full duplex?

If the communication between the host computer and target computer is
TCP/IP, set the host computer network interface card (NIC) card and hub
to half-duplex mode. Do not set the mode to full-duplex mode.

4 Build Failed — Compiler not supported?

Verify that a supported compiler is being used and that the blocks in the
model can be compiled with the given compiler and compiler version.

5 Build Failed — Compiler path?

All Microsoft Visual compiler components must be in the Microsoft Visual
Studio® folder after installation. If the compiler is not installed at the
required location, you might get one of the following errors:

Error executing build command: Error using ==> make_rtw
Error using ==> rtw_c (SetupForVisual)
Invalid DEVSTUDIO path specified

13-9

1 3 Confidence Test Failures

13-10

or
Error executing build command: Error using ==> make_rtw

Error using ==> rtw_c
Errors encountered while building model "xpcosc"

along with the following MATLAB Command Window error:
NMAKE: fatal error U1064: MAKEFILE not found and no target

specified
Stop.

Verify your compiler setup:

a In the MATLAB command window, type:
xpcsetCC('setup')

This function queries the host computer for C compilers that the xPC
Target environment supports. It returns output like the following:

Select your compiler for xPC Target.

[1] Microsoft Visual C++ Compilers 2008 Professional Edition (SP1) in
c:\Program Files (x86)\Microsoft Visual Studio 9.0
[2] Microsoft Visual C++ Compilers 2010 Professional in

C:\Program Files (x86)\Microsoft Visual Studio 10.0
[0] None
Compiler:

b At the Compiler prompt, enter the number for the compiler that you
want to use. For example, 2.

The function verifies your selection:

Verify your selection:

Compiler: Microsoft Visual C++ Compilers 2010 Professional
Location: C:\Program Files (x86)\Microsoft Visual Studio 10.0

Test 4: Build and Download xpcosc

Are these correct [y]/n?

¢ Typey or press Enter to verify the selection.
The function finishes the dialog.

Done...

6 Build Failed — COM port read failed?
If you see the following MATLAB Command Window error:

ReadFile failed while reading from COM-port

¢ Check the state of your target computer. If it is unresponsive, you might
need to reboot the target computer.

¢ In xPC Target Explorer, try to connect to the target computer again.
Be sure to also check the connection between the host computer and
target computer.

7 If these steps do not solve your problem, check the questions and
answers for Model Compilation, Application Download, and Host-Target
Communication and section “Faulty BIOS Settings on Target Computer”
on page 15-2.

8 If you still cannot solve your problem, see “How Do I Contact MathWorks
Technical Support?” on page 25-5.

13-11

1 3 Confidence Test Failures

Test 5: Check Host-Target Communications

This error occurs only when the environment variable settings are out of date.
Troubleshoot failures with the following procedure:

1 Type xpcexplr in the MATLAB Command Window.

2 In the Targets pane, expand the target computer node.

3 Click the Target Properties icon ﬁ in the toolbar or double-click
Properties.

4 Select Host-to-Target communication and make the required changes
to the communication properties.

Note RS-232 host-target communication mode will be removed in a future
release. Use TCP/IP instead.

5 Select Boot configuration.

6 Set the required Boot mode.

Tip If you have xPC Target Embedded Option installed, verify that you
have selected Boot modeStand Alone.

For information on boot options, see “Target Boot Methods”.

7 Click Create boot disk
8 Reboot the target computer.
9 Rerun xpctest.

10 If these steps do not resolve the issue, recreate the target boot kernel using
xpcbootdisk, reboot the target computer, and rerun xpctest.

13-12

Test 5: Check Host-Target Communications

11 If these steps do not solve your problem, check the questions and answers
for Host-Target Communication and section “Faulty BIOS Settings on
Target Computer” on page 15-2.

12 If you still cannot solve your problem, see “How Do I Contact MathWorks
Technical Support?” on page 25-5.

13-13

1 3 Confidence Test Failures

Test 6: Download Prebuilt Target Application

This test runs the basic target object constructor, xpc. This error rarely occurs
unless an earlier test has failed.

1 Verify that the preceding steps completed without producing an error
message.

2 Configure, build and download the tutorial model and record whatever
error messages appear (see “Build and Download Target Application”).

3 If these steps do not solve your problem, check the questions and answers
for Application Download and Host-Target Communication and section
“Faulty BIOS Settings on Target Computer” on page 15-2.

4 If you still cannot solve your problem, see “How Do I Contact MathWorks
Technical Support?” on page 25-5.

13-14

Test 7: Execute Target Application

Test 7: Execute Target Application

This test executes a target application (xpcosc) on the target computer. This
test fails if you change the xpcosc model start time to something other than

0, such as 0.001. This change causes the test, and the MATLAB interface, to
halt. To address this failure:

1 Set the xpcosc model start time back to 0.

2 Rerun the test.

3 If these steps do not solve your problem, check the questions and answers
for Application Execution, Application Performance, Application Signals,

and Application Parameters and section “Faulty BIOS Settings on Target
Computer” on page 15-2.

4 If you still cannot solve your problem, see “How Do I Contact MathWorks
Technical Support?” on page 25-5.

13-15

1 3 Confidence Test Failures

Test 8: Upload Data and Compare

This test executes a target application (xpcosc) on the target computer. This
test might fail if you change the xpcosc model (for example, if you remove
the Outport block).

Note Do not modify the files installed with the xPC Target software. If you
want to modify one of these files, copy the file and modify the copy.

13-16

To eliminate this problem, restore the xpcosc example model to its original
state by one of the following methods:

® Recreate the original model by editing it in the following location:

matlabroot\toolbox\rtw\targets\xpc\xpcdemos

® Reinstall the software.

Other issues might also cause this test to fail. If you still need more help,
check the following:

¢ If you are running a new xPC Target release, be sure that you have a
new target boot kernel for this release. See “What Should I Do After
Updating Software?” on page 25-4.

e There is a known issue with xPC Target software version
1.3. It might occur when you run xpctest two consecutive
times. See the known issue and solution documented in
http://www.mathworks.com/support/solutions/data/1-18DTB.html.

If you are installing another version of the xPC Target software on top of an
existing version, check the version number of the current installation. At
the MATLAB command line, type xpclib. The version number appears at
the bottom of the xPC Target block library window. If the version number
is not the one to which you want to upgrade, reinstall the software.

If these steps do not solve your problem, check the questions and answers
for Application Execution, Application Performance, Application Signals,

and Application Parameters and section “Faulty BIOS Settings on Target
Computer” on page 15-2.

http://www.mathworks.com/support/solutions/data/1-18DTB.html

Test 8: Upload Data and Compare

5 If you still cannot solve your problem, see “How Do I Contact MathWorks
Technical Support?” on page 25-5.

13-17

1 3 Confidence Test Failures

13-18

Host Computer
Configuration

14 Host Computer Configuration

Why Does Boot Drive Creation Halt?

If your host computer MATLAB interface halts while creating an xPC Target
boot disk or network boot image:

¢ Use another drive to create a new xPC Target boot drive or network boot
image.

¢ [f your host computer has antivirus software, it might conflict with the
MATLAB software. Disable the software while using the MATLAB
interface.

¢ Verify that the host computer drive is accessible. If it is not accessible,
replace the drive.

14-2

Target Computer
Configuration

e “Faulty BIOS Settings on Target Computer” on page 15-2

e “Allowable Partitions on the Target Hard Drive” on page 15-3
* “File System Disabled on the Target Computer” on page 15-4
e “Adjust the Target Computer Stack Size” on page 15-5

e “How Can I Get PCI Board Information?” on page 15-6

e “How Do I Diagnose My Board Driver?” on page 15-7

1 5 Target Computer Configuration

Faulty BIOS Settings on Target Computer

The BIOS settings of a computer system influence how the computer works. If
you experience problems using the xPC Target software, check the system
BIOS settings of the target computer. These settings are beyond the control of
the xPC Target product. See “Target Computer BIOS Settings”.

Faulty BIOS settings can cause issues like the following:

* Why is my target not booting?
® Why can getxpcpci detect PCI boards, but autosearch -1 cannot?

® Why can my standalone application run on some target computers, but
not others?

* Why is my target computer crashing while downloading applications?
* Why is my target PC104 hanging on boot?

¢ Why is my boot time slow?

¢ Why is my software not running in real time?

¢ Why are my USB ports not working?

15-2

Allowable Partitions on the Target Hard Drive

Allowable Partitions on the Target Hard Drive

The target computer hard drive can contain one or multiple partitions.
However, the xPC Target software supports file systems of type FAT-12,
FAT-16, or FAT-32 only.

15-3

1 5 Target Computer Configuration

File System Disabled on the Target Computer

If your target computer does not have a FAT hard disk, the monitor on the
target computer displays the following error:

ERROR -4: drive not found
No accessible disk found: file system disabled

If you do not want to access the target computer file system, you can ignore
this message. If you want to access the target computer file system, add a
FAT hard disk to the target computer system and reboot.

Tip Verify that the hard drive is not cable-selected and that the BIOS can
detect it.

15-4

Adjust the Target Computer Stack Size

Adjust the Target Computer Stack Size

To discover and adjust the stack size used by the real-time threads on the
target computer:

1 Add the following blocks to your model:

e xPC Target Get Free Stack Size — Outputs the number of bytes of stack
memory currently available to the target application thread.

e xPC Target Get Minimal Free Stack Size — Outputs the number of bytes
that have not been used in the stack since the thread was created.

Note The underlying function traverses the entire stack to find unused
bytes. This is a time-consuming operation. Therefore, Get Minimal Free
Stack Size should be used only for diagnostic purposes.

2 Execute the target application, monitoring the stack size and minimal
stack size.

3 Calculate a stack size that allows execution to proceed.

Note

® To meet the memory requirements, you might have to reconfigure your
target computer.

e The xPC Target kernel can use only 2 GB of memory.

4 Adjust the stack size of the real-time threads by setting a TLC option in
the Configuration Parameters dialog, Code Generation node, section Build
Process.

For example, to set the stack size to 256 kBytes, type the following in the
TLC option box:

-axPCModelStackSizeKB=256

15-5

1 5 Target Computer Configuration

15-6

How Can | Get PCl Board Information?

Information about the PCI devices in your target computer is useful if you
want to determine what PCI boards are installed in your xPC Target system,
or if you have multiple boards of a particular type in your system. Before you
start, determine what boards are installed in your target computer by typing
the following in the MATLAB Command Window:

getxpcpci('all')

Note Typing this command will automatically connect the host computer to
the default target computer, if it i1s running.

If you have or want to use multiple boards of a particular type in
your system, verify that the I/O driver supports multiple boards. See
the “Multiple board support” entry for this board type in the xPC
Target library or the xPC Target Interactive Hardware Selection Guide
(http://www.mathworks.com/support/product/XP/productnews
/interactive_guide/xPC_Target_Interactive_ Guide.html

If you confirm that the board type supports multiple boards, and these boards
are installed in the xPC Target system, do the following to obtain the bus
and slot information for these boards:

1 In the PCI devices display, note the contents of the Bus and Slot columns
of the PCI devices in which you are interested.

2 Enter the bus and slot numbers as vectors into the PCI Slot parameter of
the PCI device. For example:

[1 9]
where 1 1s the bus number and 9 is the slot number.

For additional information about PCI bus I/O devices, refer to “PCI Bus I/O
Devices”.

http://www.mathworks.com/support/product/XP/productnews/interactive_guide/xPC_Target_Interactive_Guide.html
http://www.mathworks.com/support/product/XP/productnews/interactive_guide/xPC_Target_Interactive_Guide.html

How Do | Diagnose My Board Driver?

How Do | Diagnose My Board Driver?

If you encounter issues using the xPC Target I/O drivers:

1 Display the input/output behavior of the board using an external instrument,
such as an oscilloscope or logic analyzer.

2 Verify that you have configured the 1/0 board driver according to the
manufacturer’s data sheet.

3 Verify that you are using the latest version of the I/O board driver and of the
xPC Target software. See “How Do I Get a Software Update?” on page 25-3.

4 Verify that the behavior persists when you run the target application on a
different target computer.

5 Verify that the behavior persists when you install another instance of the I/O
board in the target computer.

6 Download the manufacturer’s I/O driver and diagnostic software from the
manufacturer web site, install the driver and software on your computer, and
test the hardware using the manufacturer’s software.

7 Report the issue to MathWorks Support at
http://www.mathworks.com/support/contact_us/index.html.

15-7

http://www.mathworks.com/support/contact_us/index.html

1 5 Target Computer Configuration

15-8

Host-Target
Communication

¢ “Is There Communication Between the Computers?”’ on page 16-2
® “Boards with Slow Initialization” on page 16-4

¢ “Timeout with Multiple Ethernet Cards” on page 16-6

e “Recovery from Board Driver Errors” on page 16-8

¢ “How Can I Diagnose Network Problems?” on page 16-9

l 6 Host-Target Communication

16-2

Is There Communication Between the Computers?

Use the following MATLAB commands from the host computer to validate
the host/target setup:

xpctargetping

The xpctargetping command performs a basic communication check
between the host and target computers. This command returns success
only if the xPC Target kernel is loaded and running and the host and target
computer are communicating. Use this command for a quick check of the
communication between the host computer and target computer.

xpctest

The xpctest command performs a series of tests on your xPC Target
system. These tests range from performing a basic communication check
to building and running target applications. At the end of each test, the
command returns an OK or failure message. If the test is inappropriate for
your setup, the command returns a SKIPPED message. Use this command
for a thorough check of your xPC Target installation.

Communication errors might also occur in the following instances:

The target computer is running an old xPC Target boot kernel that is not in
sync with the xPC Target release installed on the host computer. Create
a new target boot kernel for each new release.

If the communication between the host computer and target computer is
TCP/1IP, set the host computer network interface card (NIC) card and hub
to half-duplex mode. Do not set the mode to full-duplex mode.

If you have an active firewall in your system, you might experience
communication errors. For example, build errors might occur if you try to
build and download a model with a thermocouple board (causing a slower
initialization time) in a system that contains a firewall. To work around
this issue, you can add the MATLAB interface to the firewall exception list.
See also “Boards with Slow Initialization” on page 16-4

To diagnose BIOS problems, see:
= “Faulty BIOS Settings on Target Computer” on page 15-2
= “Target Computer BIOS Settings”

Is There Communication Between the Computers?

e If multiple Ethernet cards or chips are installed in the target computer, see
“Timeout with Multiple Ethernet Cards” on page 16-6.

16-3

l 6 Host-Target Communication

16-4

Boards with Slow Initialization

Some xPC Target boards take a long time to initialize. This situation might
cause the software to run out of time before a model downloads, causing the
host computer to disconnect from the target computer.

By default, if the host computer does not get a response from the target
computer after downloading a target application and waiting 5 seconds, the
host computer software times out. The target computer responds only after
downloading and initializing the target application.

Usually 5 seconds is enough time to initialize a target application, but in
some cases it might not be long enough. The time to download a target
application mostly depends on your I/O hardware. For example, thermocouple
hardware (such as the PCI-DAS-TC board) takes longer to initialize. With
slower hardware, you might also get errors when building and downloading
an associated model. Even though the target computer is fine, a false timeout
is reported and you might get an error like the following:

"cannot connect to ping socket"

This is not a fatal error. You can reestablish communication with the
following procedure:

1 Type xpctargetping at the MATLAB command prompt.

2 Wait for the system to return from the xpctargetping command. If
xpctargetping finds a working connection between the host computer and
target computer, the response is something like:

ans =
Success

3 Restart the target object.

Alternatively, you can increase the timeout value, using the following
procedure:

1 In your Simulink model, select Simulation > Model Configuration
Parameters, and navigate to the xPC Target options node.

Boards with Slow Initialization

2 Clear the Use default communication timeout parameter.

The Specify the communication timeout in seconds parameter
appears.

3 Specify a new timeout value, in seconds. For example, enter 20 in
parameter Specify the communication timeout in seconds.

4 Click OK.

5 In the Simulink Editor window and from the Code menu, click C/C++
Code > Build Model.

In this case, the host computer waits for about 20 seconds before declaring

that a timeout has occurred. It does not take 20 seconds for every download.
The host computer polls the target computer about once every second, and

if a response is returned, returns the success value. Only in the case where
a download really fails does it take the full 20 seconds.

16-5

l 6 Host-Target Communication

16-6

Timeout with Multiple Ethernet Cards

The xPC Target product supports a number of Ethernet cards and chips, as
described in “Ethernet Communication Setup”. If your target computer has
more than one of these cards or chips installed, you could experience timeout
problems. For example, suppose you are using the Network Boot option to
boot the target computer. If the host computer boots the target computer
using Ethernet A on the target computer, it associates the IP address of the
target computer with the Media Access Control (MAC) address of Ethernet
adapter A. If, after it does so, the target computer BIOS connects the target
computer to Ethernet B, the xPC Target software cannot connect the host and
target computers because they are connected to different Ethernet controllers.

First, try to disable or remove the Ethernet controller that you will not use.
For example, if you have both an on-board Ethernet controller and a separate
Ethernet card, you could disable the on-board Ethernet controller through the
target computer BIOS. If you are required to have multiple Ethernet adapters
of the same type in the target computer, you might need to experiment to
determine which Ethernet adapter the software has chosen.

If you are not using the Network Boot option to boot the target computer
and cannot establish communication between the target computer and host
computer:

Switch the network cable to the other Ethernet port and try again.

If you can establish communication, use this Ethernet port to connect the
host computer to the target computer.

If you are using the Network Boot option and experience this issue, do the
following:

Connect the network cable to Ethernet adapter B.
In the MATLAB Command Window, type
larp -d

This command removes the association between the target computer address
and the hardware address of Ethernet adapter A from the cache of the host
computer. This removal allows a new connection (and association) to be made.

Timeout with Multiple Ethernet Cards

3 Change the Ethernet adapter card that the Network Boot option uses. You
can do this in one of the following ways:

¢ Change the target computer BIOS to change the Ethernet adapter to the
one that the Network Boot option is looking for.

e Follow the procedure “Ethernet Card Selection by Index” on page 4-27..

16-7

l 6 Host-Target Communication

Recovery from Board Driver Errors

If an error in a driver causes the xPC Target system to crash, a timeout
occurs and xpctargetping fails with an error message. In such an event, you
need to reboot the target and reestablish communication between the host
computer and target computer.

To get the xPC Target system back up and running:
1 Remove the reference to the problem driver from the model.
2 Reboot the target computer.

3 At the MATLAB command line, issue xpctargetping to reestablish
communications.

4 If the driver with which you are having problems is one provided by
MathWorks, try to pinpoint the problem area (for example, determine

whether certain settings in the driver block cause problems).

Alternatively, you can exit and restart the MATLAB interface.

16-8

How Can | Diagnose Network Problems?

How Can | Diagnose Network Problems?

If you experience network problems when using this product,

use an available computer with Internet access to

refer to the MathWorks Support xPC Target Web site
(http://www.mathworks.com/support/search_results.html?g=product:"xPC+Target
This Web site has the most up-to-date information about this topic.

16-9

http://www.mathworks.com/support/search_results.html?q=product:"xPC+Target"

l 6 Host-Target Communication

16-10

Target Computer Boot
Process

* “Why Won't the Target Computer Boot?” on page 17-2

* “Why Won’t the Kernel Load?” on page 17-4

® “Why Is the Target Medium Not Bootable?” on page 17-5
® “Why Is the Target Computer Halted?” on page 17-6

l 7 Target Computer Boot Process

17-2

Why Won't the Target Computer Boot?

If your target computer cannot boot with the xPC Target boot disk, removable
boot drive, or network boot image:

® Recreate the target boot kernel using new media.

¢ Verify using xpcgetenv that the current properties in the xPC Target

kernel correspond with the environment variables displayed in the
Host-to-Target communication and Target settings panes of xPC
Target Explorer.

Tip To display the allowed values of xPC Target environment properties,
type setxpcenv without arguments. To display their current values, type
getxpcenv without arguments.

Verify that the xPC Target boot disk or removable boot drive contains files
like the following:

= BOOTSECT.RTT
= XPCTGB1.RTA

Note The name of the last file varies depending on the communication
method.

If the .RTT and .RTA files are not complete, reinstall the software.

The xPC Target kernel may not be able to discover system hardware not
compliant with the Advanced Configuration and Power Interface (ACPI)
standard. To allow the kernel to discover such hardware, use the following
xPC Target environment property to access the legacy MPFPS in the
computer BIOS:

setxpcenv('LegacyMultiCoreConfig', 'on')

If you are doing a network boot and the boot procedure displays a message
similar to TFTP Timeout:

Why Won't the Target Computer Boote

= Verify that the xpctftpserver program is running. If it is not, recreate
the network boot image.

= Temporarily disable the Internet security (firewall) software on the host
computer. If you can now boot:

Follow the Internet security software instructions to allow the xPC
Target boot procedure to work in its presence. For example, add the
MATLAB interface to the firewall exception list.

Reenable the Internet security software.

If problems persist, see the questions and answers for Target Computer
Boot Process.

If you still cannot boot the target computer from a boot disk or removable
boot drive, you might need to replace the target computer disk drive
hardware.

17-3

l 7 Target Computer Boot Process

Why Won't the Kernel Load?

When booting the target computer, you might see a message like the following:

xPC Target 4.X loading kernel..@eeReeeerereeeeereeee@

The target computer displays this message when it cannot read and load
the kernel from the target boot disk.

The probable cause is a bad boot kernel. To diagnose this problem, recreate
the target boot kernel. If you have a removable boot drive, reformat the drive
or use a new formatted drive. If you have a boot CD, create a new boot disk. If
you are using network boot, recreate the network boot image.

17-4

Why Is the Target Medium Not Bootable?

Why Is the Target Medium Not Bootable?

When booting the target computer, you might get a message similar to the
following:

Not a bootable medium or NTLDR is missing

Selecting either DOS Loader or Stand Alone mode instead of Removable
Disk mode can cause this message.

To solve this problem:
1 Type xpcexplr in the MATLAB Command Window.
2 In the Targets pane, expand the target computer node.

3 Click the Target Properties icon % in the toolbar or double-click
Properties.

4 Select Boot configuration and select the desired entry in the Boot mode
list.

5 Click Create boot disk..

17-5

l 7 Target Computer Boot Process

Why Is the Target Computer Halted?
If your target computer displays a System Halted message while booting:

¢ Verify in the Host-to-Target communication pane of xPC Target
Explorer that the Target driver parameter is configured as required by
your network.

® Recreate the target boot kernel using new media and use the new kernel
to boot the target computer.

¢ Verify that the xPC Target software supports your target computer
hardware. Be sure to verify the network communication hardware.

17-6

Modeling

e “How Do I Handle Encoder Register Rollover?” on page 18-2

¢ “How Can I Write Custom Device Drivers?” on page 18-3

1 8 Modeling

How Do | Handle Encoder Register Rollover?

Encoder boards have a fixed size counter register of 16 bits, 24 bits, or 32
bits. Regardless of the size, the register eventually overflows and rolls over.
Registers can roll over in either the positive or negative direction.

Some boards provide a hardware mechanism to account for overflows or
rollovers. As a best practice, you should design your model to deal with
overflows or rollovers. Defining an initial count can handle the issue for some
applications.

To handle register rollovers, you can use standard Simulink blocks to design
the following counter algorithm types:

® Rollover Counter — Counts the number of times the output of an encoder
block has rolled over. This counter should count up for positive direction
rollovers and down for negative direction rollovers.

¢ Extended Counter — Provides a rollover count not limited by register size.
For an n-bit register, this counter should be able to count values greater
than 2% (n-1).

The Incremental Encoder/Utilities/Rollover sublibrary of the xPC Target
library contains example blocks for these two types of counters. See Rollover
Counter and Extended Counter for further details. You can use these blocks
in your model as is, or modify them for your model. Connect the output of the
encoder block to these blocks.

Note To view the algorithms used in these implementations, right-click the
subsystem and select Mask > Look Under Mask.

Keep the following requirements in mind when using these blocks:

® Some driver blocks allow an initial starting value to be loaded into the
register. You must pass this value to the rollover blocks to adjust for
that offset.

¢ The rollover block needs to know how many counts each rollover represents.
Typically, this number is 2°n, where n is the size of the register in bits.

18-2

How Can | Write Custom Device Drivers?

How Can | Write Custom Device Drivers?

You might want to write your own driver if you want to include an
unsupported device driver in your xPC Target system. See “Custom Device
Drivers”.

Before you consider writing custom device drivers for the xPC Target system,
you should possess:

® Good C programming skills

* Knowledge of writing S-functions and compiling those functions as C-MEX
functions

¢ Knowledge of SimStruct, a MATLAB Simulink C language header file that
defines the Simulink data structure and the SimStruct access macros. It
encapsulates the data required by the model or S-function, including block
parameters and outputs.

® An excellent understanding of the I/O hardware. Because of the real-time
nature of the xPC Target system, you must develop drivers with minimal
latency. Because most drivers access the I/O hardware at the lowest
possible level (register programming), you must have a good understanding
of how to control a board with register information and have access to the
register-level programming manual for the device.

® A good knowledge of port and memory I/O access over various buses. You
need this information to access I/O hardware at the register level.

18-3

1 8 Modeling

18-4

Model Compilation

¢ “Requirements for Standalone Target Applications” on page 19-2
¢ “Compiler Errors from Models Linked to DLLs” on page 19-3
® “Compilation Failure with WATCOM Compilers” on page 19-4

19 Model Compilation

Requirements for Standalone Target Applications

You can use either the xPC Target API dynamic link library (DLL) or the
xPC Target component object model (COM) API library to create a custom
standalone interface to control a real-time application running on the target
computer. To deploy these standalone applications, you must have the xPC
Target Embedded Option license. Without this license, you can create and use
the standalone application in your environment, but you cannot deploy that
application on another host computer that does not contain your licensed copy
of the xPC Target software.

See “Stand Alone Boot Method”.

19-2

Compiler Errors from Models Linked to DLLs

Compiler Errors from Models Linked to DLLs

The xPC Target software supports links to static link libraries (.1ib) only, not
links to dynamic link libraries (.dll). When you compile your models, verify
that you link only to static link libraries. Linking to static libraries is not an
issue when you compile with xPC Target S-functions.

19-3

19 Model Compilation

Compilation Failure with WATCOM Compilers

The Open WATCOM compiler is no longer supported. Use a Microsoft
compiler instead.

19-4

Application Download

¢ “Why Does My Download Time Out?” on page 20-2
¢ “Increase the Time for Downloads” on page 20-4

¢ “Why Does the Download Halt?” on page 20-5

20 Application Download

20-2

Why Does My Download Time Out?

If the host computer and target computer are not connected, or you have
not entered the required environment properties, the download process
terminates after about 5 seconds with a timeout error. Be sure that you have
followed the instructions outlined in “Host-Target Configuration” before
continuing.

To diagnose the problem, use the following procedure:
1 Type xpcexplr in the MATLAB Command Window.
2 In the Targets pane, expand the target computer node.

3 Click the Target Properties icon ﬁ in the toolbar or double-click
Properties.

4 Select Host-to-Target communication and make the required changes
to the communication properties.

Note RS-232 host-target communication mode will be removed in a future
release. Use TCP/IP instead.

5 Select Boot configuration and click Create boot disk.
6 Reboot the target computer and try downloading the application again.

7 In some cases, the download might have completed even though you get a
timeout error. To detect this condition, wait until the target screen displays

System:initializing application finished.

8 Type xpctargetping at the MATLAB command prompt.

If xpctargetping finds a working connection between the host computer
and target computer, the response is something like:

ans =

Why Does My Download Time Out2

Success

9 Right-click the target computer in question and select Connect.

If the connection resumes, the connection is working. If the connection
times out consistently for a particular model, the timeout needs to be
increased. See “Increase the Time for Downloads” on page 20-4.

For information on setting up the xPC Target environment, see either “RS-232
Settings” or “ISA Bus Ethernet Settings”, and then see “Target Boot Methods”.

20-3

20 Application Download

20-4

Increase the Time for Downloads

By default, if the host computer does not get a response from the target
computer after downloading a target application and waiting about 5 seconds,
the host computer software times out. On the other hand, the target computer
responds only after downloading and initializing the target application.

Usually 5 seconds is enough time to download a target application, but

in some cases it may not be long enough. The time to download a target
application mostly depends on your I/O hardware. For example, thermocouple
hardware takes longer to initialize. In this case, even though the target
computer is fine, a false timeout is reported.

You can increase the timeout value in one of the following ways:

® At the model level, open the Simulink > Model Configuration
Parameters dialog box and navigate to the xPC Target options node.
Clear the Use default communication timeout parameter and enter a
new desired timeout value in the Specify the communication timeout
in seconds parameter. For example, enter 20 to increase the value to 20 s.

® At the target application level, use the target application
xpctarget.xpc.set (target application object) method to set
the CommunicationTimeOut property to the desired timeout value. For
example, to increase the value to 20 s:

tg.set('CommunicationTimeOut',20)

For both methods, the host computer polls the target computer about once
every second, and if a response is returned, returns the success value. Only if
a download really fails does the host computer wait the full twenty seconds.

Why Does the Download Halt?

Why Does the Download Halt?

If the MATLAB interface freezes and there are target ping errors, this failure
is likely the result of an active firewall, a long initialization process, or both
combined. To diagnose this problem, see:

¢ “Is There Communication Between the Computers?” on page 16-2

® “Boards with Slow Initialization” on page 16-4

“Timeout with Multiple Ethernet Cards” on page 16-6

20-5

20 Application Download

20-6

Application Execution

* “View Application Execution from the Host” on page 21-2

e “Sample Time Deviates from Expected Value” on page 21-3
® “What Measured Sample Time Can I Expect?” on page 21-5
® “Why Has the Stop Time Changed?” on page 21-6

® “Why Is the Web Interface Not Working?” on page 21-7

21 Application Execution

View Application Execution from the Host
xPC Target displays output from the target application on the target computer
monitor. You can view this monitor from the host computer using Real-Time
xPC Target Spy.
For a single-target system, type:

Xpctargetspy

For a particular target computer TargetPC1, type:

xpctargetspy('TargetPC1')

The xPC Target Spy window is displayed on the host computer monitor.

21-2

Sample Time Deviates from Expected Value

Sample Time Deviates from Expected Value

You might notice that the sample time you measure from your model is not
equal to the sample time you requested. This difference depends on your
hardware. Your model sample time is as close to your requested time as the
hardware allows.

However, hardware does not allow infinite precision in setting the spacing
between the timer interrupts. This limitation can cause the divergent sample
times.

For the supported target computers, the only timer that can generate
interrupts is based on a 1.193 MHz clock. For the xPC Target system, the
timer is set to a fixed number of ticks of this frequency between interrupts. If
you request a sample time of 1/10000 seconds, or 100 microseconds, you do
not get exactly 100 ticks. Instead, the xPC Target software calculates that
number as:

100 x 106 s X 1.193 x 10% ticks/s = 119.3 ticks

The xPC Target software rounds this number to the nearest whole number,
119 ticks. The actual sample time is then:

119 ticks/(1.193 X 10° ticks/s) = 99.75 X 106 s
(99.75 microseconds)

Compared to the requested original sample time of 100 microseconds, this
value 1s 0.25% faster.

As an example of how you can use this value to derive the expected deviation
for your hardware, assume the following:

® Qutput board that generates a 50 Hz sine wave (expected signal)
® Sample time of 1/10000
e Measured signal of 50.145 Hz

The difference between the expected and measured signals is 0.145 Hz, which
deviates from the expected signal value by 0.29% (0.145 / 50). Compared

21-3

21 Application Execution

21-4

to the previously calculated value of 0.25%, there is a difference of 0.04%
from the expected value.

If you want to further refine the measured deviation for your hardware,
assume the following:

® Qutput board that generates a 50 Hz sine wave (expected signal)
® Sample time of 1/10200
e Measured signal of 50.002 Hz

1/10200 s X 1.193 x 108 ticks/s = 116.96 ticks

Round this number to the nearest whole number of 117 ticks. The resulting
frequency is then

(116.96 ticks/117)(50) = 49.983 Hz

The difference between the expected and measured signal is 0.019, which
deviates from the expected signal value by 0.038% (0.019 / 50.002). The
deviation when the sample time is 1/10000 1s 0.04%.

Some amount of error is common for most computers, and the margin of error
varies from machine to machine.

Note Most high-level operating systems, like Microsoft Windows or Linux®,
occasionally insert extra long intervals to compensate for errors in the timer.
Be aware that the xPC Target software does not attempt to compensate for
timer errors. For this product, close repeatability is more important for most
models than exact timing. However, some chips might have inherent designs
that produce residual jitters that could change your system behavior. For
example, some Intel® Pentium chips might produce residual jitters on the
order of 0.5 microsecond from interrupt to interrupt.

What Measured Sample Time Can | Expect?

What Measured Sample Time Can | Expect?

The xPC Target kernel is tuned for minimal overhead and maximum

performance. To check what sample time you can expect, run xpcbench at
the MATLAB command line.

e xpcbench('this') — Evaluates your target computer against predefined
benchmarks and compares it to other target computers. The results
indicate the smallest base sample time that an xPC Target application
can achieve on your system.

e xpcbench('model') — Evaluates your target computer against your
specific model.

Actual obtainable sample times depend on a number of factors, including:

® Processor performance
® Model complexity

e [/O block types

® Number of I/O channels

21-5

21 Application Execution

Why Has the Stop Time Changed?

21-6

If you change the step size of a target application after it has been built, it
is possible that the target application will execute for fewer steps than you
expect. The number of execution steps is:

floor(stop time/step size)

When you compile code for a model, Simulink Coder calculates a number of
steps based on the current step size and stop time. If the stop time is not an
integral multiple of the step size, Simulink Coder adjusts the stop time for
that model based on the original stop time and step size. If you later change a
step size for a target application but do not recompile the code, xPC Target
uses the new step size and the previously adjusted stop time. The resulting
model may execute for fewer steps than you expect.

For example, if a model has a stop time of 2.4 and a step size of 1, Simulink
Coder adjusts the stop time of the model to 2 at compilation. If you change
the step size to 0.6 but do not recompile the code, the expected number of
steps is 4, but the actual number of steps is 3 because xPC Target uses the
previously adjusted stop time of 2.

To avoid this problem, verify that the original stop time (as specified in the
model) is an integral multiple of the original step size.

Why Is the Web Interface Not Working?

Why Is the Web Interface Not Working?

The Web interface to the target computer requires a connection between a
Web browser and the IP address and port by which you access the target. If
this IP address and port is already in use because you connected to the target
via Simulink, xPC Target Explorer, or a MATLAB command such as xpc, the
Web interface cannot connect and will fail.

Tip Type the MATLAB command xpcwwwenable immediately before opening
the Web interface.

21-7

21 Application Execution

21-8

Application Parameters

¢ “Why Does the getparamid Function Return Nothing?” on page 22-2
® “Which Model Parameters Can I Tune?” on page 22-3

22 Application Parameters

Why Does the getparamid Function Return Nothing?

The xpctarget.xpc.getparamid and xpctarget.xpc.getsignalid functions
accept block_name parameters. For these functions, enter for block_name the
mangled name that the Simulink Coder software uses for code generation.
You can determine the block_name as follows:

¢ If you do not have special characters in your model, use the gcb function.

¢ [f the blocks of interest have special characters, retrieve the mangled name
with tg.showsignals='on' or tg.showparam = 'on'.

For example, if carriage return '\n' is part of the block path, the mangled
name returns with carriage returns replaced by spaces.

22-2

Which Model Parameters Can | Tune?

Which Model Parameters Can | Tune?

You can tune parameters of fixed-point data types, such as Boolean, integer,
and double. For more on fixed-point data types, see “Supported Data Types”

You cannot tune parameters of complex or multiword data types.

22-3

22 Application Parameters

22-4

Application Signals

¢ “How Do I Fix Invalid File IDs?” on page 23-2
® “Which Model Signals Can I Access?” on page 23-3

23 Application Signals

How Do | Fix Invalid File IDs?

You might get Error -10: Invalid File ID on the target computer if you
are acquiring signal data with a file scope. This error occurs because the size
of the signal data file exceeds the available space on the disk. The signal data
1s most likely corrupt and irretrievable. You should delete the signal data file
and reboot the xPC Target system. To prevent this occurrence, monitor the
size of the signal data file as the scope acquires data.

Refer to the MathWorks Support xPC Target Web site

(http://www.mathworks.com/support/search_results.html?g=product:"xPC+Target
for additional information.

23-2

http://www.mathworks.com/support/search_results.html?q=product:"xPC+Target"

Which Model Signals Can | Access?

Which Model Signals Can | Access?

You cannot directly access or tag signals from virtual buses or blocks. To
observe a virtual block:

1 Add a unity Gain block (a Gain block with a gain of 1.0) to the model.

2 Connect the signal output of the virtual block to the input of the unity
Gain block.

3 Access or tag the output signal of the unity Gain block.
To observe a virtual bus, add a unity Gain block to each individual signal.

You cannot directly access signals you have optimized with block reduction
optimization. Access these signals by making them test points.

You cannot access signals of complex or multiword data types.

23-3

23 Application Signals

23-4

Application Performance

¢ “How Can I Improve Run-Time Performance?” on page 24-2

* “Why Does Model Execution Produce CPU Overloads?” on page 24-4
¢ “How Small Can the Sample Time Be?” on page 24-6

e “Can I Allow CPU Overloads?” on page 24-7

24 Application Performance

24-2

How Can | Improve Run-Time Performance?

To improve runtime performance and reduce the task execution time (TET)
of a model model:

Run xpcbench at the MATLAB command line:

® xpcbench('this') — Evaluates your target computer against predefined
benchmarks and compares it to other target computers. The results
indicate the smallest base sample time that an xPC Target application
can achieve on your system.

® xpcbench('model') — Evaluates your target computer against your
specific model.

Tip For more information on xPC Target benchmarking,
see http://www.mathworks.com/support/product/XP/-
productnews/benchmarks.html.

If your target computer is not high on the list of benchmark computers,
consider switching to a target computer with higher performance.

Run the xPC Target profiler on model and record where the time is being
spent. (See “Profiling Target Application Execution” on page 26-6.)

If the model contains many states (for example, more than 20 states), clear
the States check box in the Data Import/Export pane of the Configuration
Parameters dialog box. This disables state logging, making more memory
available for the target application. An alternative to logging states is to
select individual states of interest by adding Outport blocks to the model.

Clear the Save to workspace check boxes in the Data Import/Export pane
of the Configuration Parameters dialog box (Time, States, Output, Final
states, Signal logging). This turns logging off, making more computing time
available for calculating the model.

Clear the Log Task Execution Time check box in the xPC Target options
pane of the Configuration Parameters dialog box. This disables TET logging
for the application.

http://www.mathworks.com/support/product/XP/productnews/benchmarks.html
http://www.mathworks.com/support/product/XP/productnews/benchmarks.html

How Can | Improve Run-Time Performance?

10

12

13

14

15

16

Increase Fixed-step size (fundamental sample time) in the Solver pane
of the Configuration Parameters dialog box. Executing with a very short
sample time might overload the CPU.

Use polling mode, if you do not need background processes (see “Polling Mode”
on page 6-5 for more on setting this mode).

Disable the target scope display. To do this, clear the Graphics mode check
box in the Target settings pane of xPC Target Explorer.

Use fewer scopes in the model.
Reduce the number of I/O channels in the model.

Consider partitioning the model and running it on a multicore system (see
“Design Considerations”).

Note To use your target computer in multicore mode, you must set the
Multicore CPU check box in the Target settings pane of xPC Target
Explorer.

Consider partitioning the model and running it on multiple target computers.
This optimization might require multitarget synchronization using CAN,
UDP, parallel port, or reflective memory.

Check the questions and answers under Application Performance for tips on
eliminating CPU overloads and improving task execution time.

Check the MathWorks Support Web site and MATLAB Central for other tips.
See “Where Is the MathWorks Support Web Site?” on page 25-2.

Call MathWorks Technical Support. See “How Do I Contact MathWorks
Technical Support?” on page 25-5.

24-3

24 Application Performance

Why Does Model Execution Produce CPU Overloads?

A CPU overload indicates that the CPU was unable to complete processing a
model time step before being asked to restart. When an overload occurs, one
of the following can happen:

¢ The xPC Target kernel halts model execution.

e [f the overload is allowed, the model execution continues until a predefined
event (see “Can I Allow CPU Overloads?” on page 24-7 for details). If a
model continues running after a CPU overload, the model time step is as
long as the time required to finish the execution. This behavior delays the
following time step.

This error might occur if you have:

¢ Real CPU overloads — Those caused by model design or target computer
resources. For example, a model is trying to do more than can be done in
the allocated time on the target computer. Possible reasons are:

= The target computer is too slow or the model sample time is too small
(see “How Small Can the Sample Time Be?” on page 24-6).

The model is too complex (algorithmic complexity).

I/0 latency, where each I/O channel used introduces latency into the
system. This might cause the execution time to exceed the model time
step.

To address I/0 latency, you can use the xPC Target Interactive Guide
(http://www.mathworks.com/support/product/XP/productnews/ -
interactive_guide/xPC_Target_Interactive_Guide.html)

to find latency numbers for boards supported by the block library.
For example, if your application includes the National Instruments®
PCI-6713 board, and you want to use four outputs:

1 Look up the board in the xPC Target Interactive Guide.

From the table, the D/A latency is 1+2.4N.
2 To get the latency for four outputs, calculate the latency

1+(2.4 x 4) = 10.6 microseconds

24-4

http://www.mathworks.com/support/product/XP/productnews/interactive_guide/xPC_Target_Interactive_Guide.html
http://www.mathworks.com/support/product/XP/productnews/interactive_guide/xPC_Target_Interactive_Guide.html

Why Does Model Execution Produce CPU Overloads?

3 Include this value in your sample time calculations.

¢ Spurious CPU overloads — Commonly caused by factors outside of
the model design. These overloads are most likely caused by one of the
following:

= Advanced Power Management
= Plug-and-Play (PnP) operating system
= System Management Interrupts (SMIs)

Enabling these properties causes non-real-time behavior from the target
computer. You must disable these BIOS properties for the target computer
to run the target application in real time. See“Target Computer BIOS
Settings”.

Note Some BIOS do not allow you to disable SMIs.. However, for some
chipsets, you can programmatically prevent or disable SMIs. For example,
see the Disabling SMIs on Intel ICH5 Chipsets document at MATLAB
Central for a solution to disabling SMIs in the Intel ICH5 family.

For further information and test models, see the xPC Target CPU QOverloads
document at MATLAB Central.

24-5

http://www.mathworks.com/matlabcentral/fileexchange/loadFile.do?objectId=18832&objectType=file
http://www.mathworks.com/matlabcentral/fileexchange/23507

24 Application Performance

24-6

How Small Can the Sample Time Be?

If the model has too small a sample time, a CPU overload can occur. This
error indicates that to run the target application, executing one step of the
model requires more time than the sample time for the model (Fixed step
size property) allows.

When this error occurs, the target object property CPUoverload changes from
none to detected. To diagnose the issue:

Run xpcbench at the MATLAB command line:

® xpcbench('this') — Evaluates your target computer against predefined
benchmarks and compares it to other target computers. The results
indicate the smallest base sample time that an xPC Target application
can achieve on your system.

e xpcbench('model') — Evaluates your target computer against your
specific model.

Tip For more information on xPC Target benchmarking,
see http://www.mathworks.com/support/product/XP/-
productnews/benchmarks.html.

Change the model Fixed step size property to at least the indicated
value and rebuild the model. Use the Solver node in the Simulink model
Configuration Parameters dialog.

If these steps do not solve your problem, see:

“How Can I Improve Run-Time Performance?” on page 24-2.

http://www.mathworks.com/support/product/XP/productnews/benchmarks.html
http://www.mathworks.com/support/product/XP/productnews/benchmarks.html

Can | Allow CPU Overloads?

Can | Allow CPU Overloads?

Typically, the xPC Target kernel halts model execution when it encounters
a CPU overload. You can direct the xPC Target environment to allow CPU
overloads using the following options in the TLC options parameter in the
Code Generation pane of the Simulink Configuration Parameters dialog box.

Option

Description

Default

xPCMaxOverloads

Number of acceptable overloads.

0

XxPCMaxOverloadLen

Number of contiguous
acceptable overloads. If

you do not specify this option,
the default value is the same
as xPCMaxOverloads. Specify
a value that is the same or
less than the value for the
xPCMaxOverloads option. Do
not a use a value greater than
xPCMaxOverloads.

Same as value of
xPCMaxOverloads

xPCStartupFlag

Number of executions of

the model at startup,

where the timer interrupt

is temporarily disabled during
model execution. After the
model finishes the first
xPCStartupFlag number of
executions, the xPC Target
software enables the timer
interrupt, which will invoke the
next execution for the model.

If you experience a CPU overload after the model starts, the software ignores
timer interrupts if the task is already running. The model continues running,

subject to the values of xPCMaxOverloads and xPCMaxOverloadLen. The
model then executes at the next step.

Consider the following cases:

24-7

24 Application Performance

® xPCMaxOverloads is 2. The software tolerates the first two overloads and
stops execution at the third.

xPCMaxCrverloads = 2

DE‘-EI!"='1T 1DE|W=2

e xPCMaxOverloads is 3 and xPCMaxOverloadLen is 2. The software tolerates
the first three overloads and halts the model at the fourth.

*xPCMaxOverloadLen = 2
*PCMaxCverioads = 3

LD soene

® xPCStartupFlag is 4. The kernel ignores overloads for the first four
executions.

xPCStartupFlag = 4

Sample time

The three properties interact. When the xPC Target kernel runs the model, it
checks the number of CPU overloads against the values of xPCMaxOverloads
and xPCMaxOverloadLen. When the number of CPU overloads reaches the
lower of these two values, the kernel stops executing the model.

Suppose you enter a line like the following for the TLC options parameter:

24-8

Can | Allow CPU Overloads?

-axPCMaxOverloads=30 -axPCOverLoadLen=2 -axPCStartupFlag=5

The software ignores CPU overloads for the first five iterations through the
model. After this, the software allows up to 30 CPU overloads, allowing at
most two consecutive CPU overloads.

With the TLC options, you can use the following blocks in your model to
monitor CPU overloads.

¢ Use the xPC Target Get Overload Counter and xPC Target Set Overload
Counter blocks to set and keep track of CPU overload numbers.

¢ Use the Pentium Time Stamp Counter block to profile your model.

24-9

24 Application Performance

24-10

Getting MathWorks
Support

® “Where Is the MathWorks Support Web Site?” on page 25-2

e “How Do I Get a Software Update?” on page 25-3

* “What Should I Do After Updating Software?” on page 25-4

e “How Do I Contact MathWorks Technical Support?” on page 25-5

25 Getting MathWorks® Support

Where Is the MathWorks Support Web Site?

For xPC Target solutions and guidelines, see the following MathWorks Web
site resources:

e MathWorks Support xPC Target Web site
(http://www.mathworks.com/support/search_results.html?g=product:"xPC+Targ

The xPC Target documentation is also available from this site.

e MATLAB Central File Exchange
(http://www.mathworks.com/matlabcentral/fileexchange/?term=xPC+Target)

25-2

http://www.mathworks.com/support/search_results.html?q=product:"xPC+Target"
http://www.mathworks.com/matlabcentral/fileexchange/?term=xPC+Target

How Do | Get a Software Update?

How Do | Get a Software Update?

1 Navigate to the MathWorks download page
(http://www.mathworks.com/downloads/).

2 Navigate to the page for the xPC Target software version you want and
download it to your host computer.

3 Install and integrate the new release software.

4 Recreate your xPC Target environment. (See “What Should I Do After
Updating Software?” on page 25-4.)

25-3

http://www.mathworks.com/downloads/

25 Getting MathWorks® Support

25-4

What Should | Do After Updating Software?

If you are working with a new xPC Target release, either downloaded from
the MathWorks download page (http://www.mathworks.com/downloads/) or
installed from a DVD, you must do the following:

1 Type xpcexplr in the MATLAB Command Window.

2 In the Targets pane, expand the target computer node.

3 Click the Target Properties icon % in the toolbar or double-click
Properties.

4 Select Host-to-Target communication and recreate your xPC
Target environment (see “RS-232 Communication Setup” or Network
Communication).

Note RS-232 host-target communication mode will be removed in a future
release. Use TCP/IP instead.

5 Select Boot configuration and click Create boot disk.

6 Reboot the target computer.

7 In the Simulink Editor window and from the Code menu, click C/C++
Code > Build Model for each model to be executed.

http://www.mathworks.com/downloads/

How Do | Contact MathWorks® Technical Support?

How Do | Contact MathWorks Technical Support?

1 If you cannot solve your problem, call function getxpcinfo to retrieve
diagnostic information for your xPC Target configuration. This function
writes the diagnostic information to the file xpcinfo. txt in the current folder.

Note The xpcinfo.txt file might contain information sensitive to your
organization. Review the contents of this file before disclosing it to
MathWorks.

2 Contact MathWorks directly for online or phone support:
http://www.mathworks.com/support/contact_us

25-5

http://www.mathworks.com/support/contact_us

25 Getting MathWorks® Support

25-6

Tuning Performance

¢ “Building Referenced Models in Parallel” on page 26-2
o “Multicore Processor Configuration” on page 26-4

e “Profiling Target Application Execution” on page 26-6

26 Tuning Performance

Building Referenced Models in Parallel

The xPC Target software allows you to build referenced models in parallel
on a compute cluster. In this way, you can more quickly build and download
xPC Target applications to the target computer.

Note The following procedure assumes you have a functioning xPC Target
installation on your host computer.

1 Identify a set of worker computers, which might be separate cores on your
host computer or computers in a remote cluster running under Windows.

2 If you intend to use separate cores on the host computer, install Parallel
Computing Toolbox™ on the host computer.

3 If you intend to use computers in a remote cluster:
a Install the following on each cluster computer:
e MATLAB
e Parallel Computing Toolbox
e MATLAB Distributed Computing Server™
e xPC Target

® Build compiler

Tip Install the same compiler and compiler version at the same
location as on the host computer.

b Start and configure the remote cluster according to the instructions at
http://www.mathworks.com/support/product/DM/installation/ver_current/.

4 Run MATLAB on the host computer.

5 In MATLAB, type matlabpool to open a MATLAB pool.

26-2

http://www.mathworks.se/support/product/DM/installation/ver_current/

Building Referenced Models in Parallel

6 Type pctRunOnAll to configure the compiler for the remote workers as a
group. For example:

pctRunOnAll('xpcsetCC(''VisualC'',
"'C:\Program Files\Microsoft Visual Studio 9.0'')")

In this configuration, the host computer and the remote workers have
installed Microsoft Visual Studio 9.0 at C: \Program Files\Microsoft
Visual Studio 9.0.

7 Build and download your model.

See “Reduce Build Time for Referenced Models” for more about increasing
the speed of parallel builds.

26-3

26 Tuning Performance

Multicore Processor Configuration

26-4

For better performance on your target computer, you can run multirate target
applications on multiple cores. Use this capability if your target computer
has a multicore processor and you want to take advantage of it for multirate
models. Before you consider enabling this capability, see “Target Computer
BIOS Settings” for the effects of BIOS settings.

To build and download multirate models on your multiple core target
computer:

1 Type xpcexplr in the MATLAB Command Window.

2 In the Targets pane, expand the target computer node.

3 Click the Target Properties icon ﬁ in the toolbar or double-click
Properties.

4 Select the Multicore CPU check box in the Target settings pane.
5 Open your model in Simulink Editor.

6 Add a Rate Transition block to transition between rates.

Note Multirate models must use Rate Transition blocks. If your model
uses other blocks for rate transitions, building the model generates an error.

7 Select the Ensure data integrity during data transfer check box of the
Rate Transition block parameters.

8 Clear the Ensure deterministic data transfer (maximum delay)
check box of the Rate Transition block parameters. This forces the Rate
Transition block to use the most recent data available.

Note Because this box is cleared, the transferred data might differ from
run to run.

Multicore Processor Configuration

9 In Simulink Editor, select View > Model Explorer.

10 In Simulink Model Explorer, right click in the Model Hierarchy pane and
select Configuration > Add configuration for concurrent execution

11 In the new configuration, select Solver.
12 Check Enable concurrent tasking.

13 Click Configure Tasks.

For more on configuring your model for concurrent execution, see “Design
Considerations”.

26-5

26 Tuning Performance

Profiling Target Application Execution

You can profile your target computer to see the execution sequence of your
target application and then tune the performance. This process is especially
useful if your target application is configured to take advantage of multicore
processors on the target computer.

To configure your target computer and model to take advantage of multicore
processors, see “Multicore Processor Configuration” on page 26-4.

Profiling your target computer requires these steps:

1 Configure the model to enable the collection of profile data during execution.

2 Display and evaluate the profile data.

Profiling adds a slight increase to the execution time of the target application.

In this section...

“Configuring Your Model to Collect Profile Data During Execution” on page
26-6

“Displaying and Evaluating Profile Data” on page 26-7

Configuring Your Model to Collect Profile Data During
Execution

To configure your model to collect profile data during execution:

1 In the Simulink editor window, select Simulation > Model
Configuration Parameters.

2 Open node xPC Target options from node Code Generation.
3 Select Enable profiling.
4 Type a value for the Number of events parameter.

By default, the software logs 5000 events for profiling. You can increase
or decrease this number. When the software logs the specified number of

26-6

Profiling Target Application Execution

events or the model stops, the software stops collecting the data and writes
it to current_working folder\xPCTrace.csv on the target computer.

5 Save your changes.
To try this procedure with a preconfigured model, use:
matlabroot\toolbox\rtw\targets\xpc\xpcdemos\xpcprofdemo

To build, download, and display the profile data, use a profiling script as
described in “Displaying and Evaluating Profile Data” on page 26-7.

Displaying and Evaluating Profile Data

To see the profile data that your model collects during execution on the target
computer, you run a profiling script.

If you have not yet done so, see “Configuring Your Model to Collect Profile
Data During Execution” on page 26-6.

In the MATLAB Command Window, run the script:
matlabroot\toolbox\rtw\targets\xpc\xpcdemos\profile_ xpc_demo.m
This script:

1 Builds and downloads the model that you used to
collect the profile data. By default, the script uses
matlabroot\toolbox\rtw\targets\xpc\xpcdemos\xpcprofdemo.

2 Saves the data in xPCTrace.csv on the target computer.

xPCTrace.csv is a raw data file that contains information such as a header,
version number, row in which data starts, CPU frequency, and the time of
the first event.

3 Transfers xPCTrace.csv from the target computer to the current working
folder of the target computer.

26-7

26 Tuning Performance

26-8

4 On the host computer, organizes the raw data into the profileInfo
structure and displays the profile data in a MATLAB figure window and an
HTML file.

To try this procedure with a example model, use
profile_xpc_demo.m. This example calls the script
matlabroot\toolbox\rtw\targets\xpc\xpcdemos\profile xpc_demo.m.

To evaluate the displays, see “Interpreting Profile Data” on page 26-8.

Interpreting Profile Data

The MATLAB figure window displays a task activity graph with the following
entries:

Profiling Target Application Execution

B P C Target Model Execution Plots = 5

File Edit View Insert Tools Desktop Window Help el

DS KA ODEL- S| 0E =D

Plot of recorded profiling data over 1.0201 seconds

— P
: [| — P2
Tirmer tnterupt ({11 I, I || —CPU3
: i | —CPUs
Preemption
SRR e A
CubRatel _____
dh oo Be B S B A Anh A A s A
SUhRatE1 l
dohobob bbb ob bbb oabobb
BaSERate } ” }{ H | ‘ ‘” { H‘
. | 12 14
Time in seconds
Row Description
Timer interrupt Recorded polling data for interrupts
SubRate2 Recorded polling data for SubRate2 task
SubRate1 Recorded polling data for SubRatel task
BaseRate Recorded polling data for BaseRate task

The HTML report displays model execution profile results for each task:

26-9

26 Tuning Performance

26-10

& Web Browser - xPC Target Report - Execution Profile Results

[xPC Target Report - Execution Profile Re... ><] +

«w 2 d

Model Execution Profiling Results

¢ Analysis of recorded profiling data

‘2 | @ | Location: C:\Users\ddahlbac\AppData\Local\Temp\xpc_profile 2012 5_31_17_24_34.html

All times are in seconds. The CPU frequency is 2.403e+09 Hz, and the timer resolution is 4.1615e-10 seconds.

Analysis of profiling data recorded over 1.0201 seconds.

Profiling data was recorded over 1.0201 seconds. The recorded data for task turnaround times and task execution times is presented in the table below.

Task

BaseRate
SubRatel
SubRate2

Timer
Interrupt

Maximum turnaround
time

248e-05at 035
8.28e-06 at 7.13e-06
7.15e-06 at 8.25e-06

237e-06 at 0.21

Average turnaround
time

1.6%e-05
3.09e-06
3.16e-06

1.45e-06

If there is insufficient data, values show N/A (Not Awvailable).

Maximum execution

time

2.48e-05 at 0.35
8.28e-06 at 7.13e-06
7.15e-06 at 8.25e-06

237e-06at0.21

Average execution
time

1.6%e-05
3.09e-06
3.16e-06

1.45e-06

Average sample
time

0.010001

Task turnaround time is the elapsed time between start and finish of the task. If the task is not preempted. the task turnaround time equals the task execution:

Task execution time is the time between task start and finish, when the task is actually running and not preempted by another task. The task execution time ca
be measured directly; it is inferred from the task start and finish time and the intervening periods during which another task has preempted it. Note that, in perfor
these calculations, processor time consumed by the scheduler while switching tasks is not taken into account. This means that, in cases where preemption occur
the reported task execution times overestimate the true values.

Profiling Target Application Execution

Result

Description

Maximum
turnaround time

Longest time between when the task starts and
finishes. This time includes task preemptions
(interrupts). If no preemptions occur, the maximum
turnaround time is the same as the maximum task
execution time.

Average turnaround
time

Average time between when the task starts and
finishes. This time includes task preemptions
(interrupts). If no preemptions occur, the average
turnaround time is the same as the average task
execution time.

Maximum execution
time

Longest time between when the task starts
and finishes. This time does not include task
preemptions (interrupts).

Average execution
time

Average time between when the task starts
and finishes. This time does not include task
preemptions (interrupts).

Average sample time

Average sample time of the task.

Customizing profile_xpc_demo.m
The profiling script, profile xpc_demo.m, works with the example model:

matlabroot\toolbox\rtw\targets\xpc\xpcdemos\xpcprofdemo

To customize this script:

1 Configure your model as described in “Configuring Your Model to Collect
Profile Data During Execution” on page 26-6.

2 Copy

matlabroot\toolbox\rtw\targets\xpc\xpcdemos\profile_ xpc_demo.m

to your working area and rename the copy. For example, use
the name my_profile_xpc_demo.m.

3 Edit my_profile_xpc_demo.m.

26-11

26 Tuning Performance

26-12

4 Notice that the my profile xpc_demo.m script uses the profileInfo
structure, which allows you to customize the script. This structure contains
the following fields:

Field Description Values
rawdataonhost | Location of the raw data. | 0 — Default. Transfer the
If this field does not exist, | raw data from the target
the script assumes a value | computer to the host.
of 0. 1 — Look for the saved raw
data file xPCTrace.csv in
the current folder on the
host computer.
modelname Name of the model xpcprofdemo — Default.
The name of a model in
the xpcdemos folder.
your_model_name —
Specify the name of your
model that you want to
profile.
noplot Specify whether or not 0 — Default. Do not
to display the model display the model
execution plots on the host | execution plots on the
computer monitor. host computer monitor.
1 — Display the model
execution plots on the host
computer monitor.
noreport Specify whether or not to | 0 — Default. Do not

display the model profiling
result report on the host
computer monitor.

display the model profiling
result report on the host
computer monitor.

1 — Display the model
profiling result report
on the host computer
monitor.

Profiling Target Application Execution

5 Change values as desired. For example, to profile your own model, replace
instances of xpcprofdemo with your model name, such as my xpcprofdemo.

6 Run your custom script.

26-13

26 Tuning Performance

26-14

Functions

fc422mexcalcbits

27-2

Purpose

Syntax

Arguments

Calculate parameter values for Fastcom 422/2-PCI board

[a b] = fc422mexcalcbits(frequency)
[a b df] = fc422mexcalcbits(frequency)

frequency Desired baud rate for the board

[a b] = fc422mexcalcbits(frequency) accepts a baud rate (in units
of baud/second) and converts this value into two parameters a b. You
must enter these values for the parameter Clock bits of the Fastcom®
422/2-PCI driver clock. The desired baud rate (frequency) must range
between 30e3 and 1.5e6, which is a hardware limitation of the clock
circuit.

[a b df] = fc422mexcalcbits(frequency) accepts a baud rate (in
units of baud/second) and converts this value into two parameters a

b. You must enter these values for the parameter Clock bits of the
Fastcom 422/2-PCI driver block. The third value, df, indicates the
actual baud rate that is created by the generated parameters a b. The
clock circuit has limited resolution and is unable to perfectly match an
arbitrary frequency. The desired baud rate (frequency) must range
between 30e3 and 1.5e6, which is a hardware limitation of the clock
circuit.

getxpcenv

Purpose

Syntax

Description

List environment properties assigned to MATLAB variable

getxpcenv
getxpcenv propertyname

getxpcenv displays, in the MATLAB Command Window, the property
names and current property values for the xPC Target environment.

getxpcenv propertyname displays the current value of property
propertyname. The environment properties define communication
between the host computer and target computer and the type of target
boot kernel created during the setup process.

Tip To access a subset of these properties in xPC Target Explorer:
1 Expand a target computer node in the Targets pane.

2 Click the Target Properties icon ﬁ in the toolbar or double-click
Properties.

® “Host-to-Target Communication” on page 27-4
e “Target Settings” on page 27-10

® “Boot Configuration” on page 27-13

¢ “Host Configuration” on page 27-16

27-3

getxpcenv

Host-to-Target Communication

Environment Property

Description

HostTargetComm

Property values are 'RS232' and
‘TcpIp'.

Select RS-232 or TCP/IP from the
Communication type list in the
Target Properties pane of xPC
Target Explorer.

If you select RS-232, you also must
set the property RS232HostPort.
If you select TCP/IP, then you
also need to set all properties that
start with TcpIp.

Note RS-232 Host-Target
communication mode will be
removed in a future release. Use
TCP/IP instead.

RS232Baudrate

Property values are '115200"',
'57600', '38400', '19200",
'9600', '4800°, '2400', and
'1200"'.

Select 1200, 2400, 48 00, 9600,
19200, 38400, 57600, or 115200
from the Baud rate list in the
Target Properties pane of xPC
Target Explorer.

27-4

getxpcenv

Environment Property

Description

RS232HostPort

Property values are 'COM1' and
‘comM2".

Select COM1 or COM2 from the
Host port list in the Target
Properties pane of xPC

Target Explorer. The software
automatically determines the
COM port on the target computer.

Before you can select an RS-232
port, you need to set the
HostTargetComm property to
RS232.

TcpIpGateway

Property value is
EXXX XXX XXX XXX '

Enter the IP address for your
gateway in the Gateway box in
the Target Properties pane
of xPC Target Explorer. This
property is set by default to
255.255.255.255, which means
that a gateway is not used to
connect to the target computer.

If you communicate with your
target computer from within a
LAN that uses gateways, and
your host and target computers
are connected through a gateway,
you must enter a value for this
property. If your LAN does not
use gateways, you do not need to
change this property. Ask your
system administrator.

27-5

getxpcenv

Environment Property

Description

TcpIpSubNetMask

Property value is
PXXX XXX XXX XXX 'L

Enter the subnet mask of your
LAN in the Subnet mask box in
the Target Properties pane of
xPC Target Explorer. Ask your
system administrator for this
value.

For example, your subnet mask
could be 255.255.255.0.

TcpIpTargetAddress

Property value is
EXXX XXX XXX XXX '

Enter a valid IP address for
your target computer in the

IP address box in the Target
Properties pane of xPC Target
Explorer. Ask your system
administrator for this value.

For example, 192.168.0.10.

TcpIpTargetBusType

27-6

Property values are 'PCI', 'ISA",
and 'USB'.

Select PCI, ISA, or USB from the
Bus type list in the Target
Properties pane of xPC Target
Explorer. This property is set by
default to PCI, and determines
the bus type of your target
computer. You do not need to
define a bus type for your host
computer, which can be the same
or different from the bus type in
your target computer.

getxpcenv

Environment Property

Description

If TcpIpTargetBusType is set
to PCI, then the properties
TcpIpISAMemPort and
TcpIpISAIRQ have no effect
on TCP/IP communication.

If you are using an ISA bus
card, set TcpIpTargetBusType
to ISA and enter values

for TcpIpISAMemPort and
TcpIpISAIRQ.

TcplIpTargetDriver

Property values are '3C90x ',
'18254x"', '182559', 'NE2000"',
‘NS83815', 'R8139', 'R8168"',
'Rhine', 'RTLANCE',
‘SMC91C9X "', '"USBAX772',
'"USBAX172', and 'Auto'.

Select THREECOM_3C90Xx,
INTEL_I8254x, INTEL_I82559,
NE2000, NS83815, R8139, R8168,
Rhine, RTLANCE, SMC91C9X,
USBAX772, USBAX172, or Auto
from the Target driver list in
the Target Properties pane of
xPC Target Explorer.

27-7

getxpcenv

27-8

Environment Property

Description

TcpIpTargetISAIRQ

Property value is 'n', where n is
between 5 and 15 inclusive.

Select an IRQ value from the IRQ
list in the Target Properties
pane of xPC Target Explorer.

If you are using an ISA

bus Ethernet card, you

must enter values for the
properties TcpIpISAMemPort and
TcpIpISAIRQ. The values of these
properties must correspond to the
jumper settings or ROM settings
on the ISA-bus Ethernet card.

On your ISA bus card, assign an
IRQ and I/O-port base address by
moving the jumpers on the card.

Set the IRQ to 5, 10, or 11. If
one of these hardware settings
leads to a conflict in your target
computer, choose another IRQ
and make the corresponding
changes to your jumper settings.

getxpcenv

Environment Property

Description

TcpIpTargetISAMemPort

Property value is 'Oxnnnn'.

Enter an I/O port base address in
the Address box in the Target
Properties pane of xPC Target
Explorer.

If you are using an ISA

bus Ethernet card, you

must enter values for the
properties TcpIpISAMemPort and
TcpIpISAIRQ. The values of these
properties must correspond to the
jumper settings or ROM settings
on your ISA bus Ethernet card.

On your ISA bus card, assign an
IRQ and I/O port base address by
moving the jumpers on the card.

Set the I/O port base address
to around 0x300. If one of
these hardware settings leads
to a conflict in your target
computer, choose another I/0
port base address and make the
corresponding changes to your
jumper settings.

TcpIpTargetPort

Property value is ' xxxxx'.

Enter a port address greater than
20000 in the Port box in the
Target Properties pane of xPC
Target Explorer.

This property is set by default
to 22222, The default value is
higher than the reserved area

27-9

getxpcenv

Environment Property Description

(telnet, ftp,. . .) and is only of
use on the target computer.

Target Settings

Environment Property

Description

EthernetIndex

Property value is 'n’, where n indicates the index
number for the Ethernet card on a target computer.
Note that the (n-1)th Ethernet card on the target
computer has an index number 'n'. The default index
number is 0.

If the target computer has multiple Ethernet cards,
you must select one of the cards for host-target
communication. This option returns the index number
of the card selected on the target computer upon
booting.

LegacyMultiCoreConfig

Property values are 'on' and 'off' (the default).

Set this value to 'on' only if your target computer
contains hardware not compliant with the Advanced
Configuration and Power Interface (ACPI) standard.
Otherwise, set this value to 'off'.

MaxModelSize

27-10

Property values are '1MB' (the default), '4MB', and
"16MB"'.

Select 1 MB, 4 MB, or 16 MB from the Model size list in
the Target Properties pane of xPC Target Explorer.

Choosing the maximum model size reserves the
specified amount of memory on the target computer for
the target application. Memory not used by the target
application is used by the kernel and by the heap for
data logging.

getxpcenv

Environment Property

Description

Selecting too high a value leaves less memory for data
logging. Selecting too low a value does not reserve
enough memory for the target application and creates
an error. You can approximate the size of the target
application by the size of the DLM file produced by the
build process.

¢ BootFloppy and DOSLoader modes ignore this value.

¢ In StandAlone mode, you can only use MaxModelSize
values '1MB' and '4MB'.

MulticoreSupport

Property values are 'on' and 'off' (the default).

Select or clear the Multicore CPU check box in the
Target Properties pane of xPC Target Explorer.

If your target computer has multicore processors, set
this value to 'on' to take advantage of these processors
for background tasks. Otherwise, set this value to
‘off'.

Name

Target computer name.

NonPentiumSupport

Property values are 'on' and 'off' (the default).

Select or clear the Target is a 386/486 check box in
